SimElectronics ${ }^{\circledR} 1$
 Reference

MATLAB
 SIMULINK

How to Contact The MathWorks

www.mathworks.com
comp.soft-sys.matlab
Web
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com
Product enhancement suggestions
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com

Bug reports
Documentation error reports
Order status, license renewals, passcodes
Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)
The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

SimElectronics ${ }^{\circledR}$ Reference

© COPYRIGHT 2008-2010 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

April 2008	Online only
October 2008	Online only
March 2009	Online only
September 2009	Online only
March 2010	Online only

[^0]
Block Reference

1

Actuators \& Drivers 1-2
Drivers 1-2
Rotational Actuators 1-2
Translational Actuators 1-3
Integrated Circuits 1-3
Logic 1-4
Passive Devices 1-4
Semiconductor Devices 1-5
Sensors 1-5
Sources 1-6
Additional Components/SPICE-Compatible
Components 1-7
Passive Devices 1-7
Semiconductor Devices 1-7
Sources 1-8
Utilities 1-9

Blocks - Alphabetical List

2

Index

Block Reference

Actuators \& Drivers (p. 1-2)
Integrated Circuits (p. 1-3)
Logic (p. 1-4)
Passive Devices (p. 1-4)
Semiconductor Devices (p. 1-5)
Sensors (p. 1-5)
Sources (p. 1-6)
Additional
Components/SPICE-Compatible
Components (p. 1-7)
\section*{Mechanical control and motor devices}
Electronic circuits
Logic gates
Passive electrical devices
Circuit components made from semiconductor material
Electromechanical sensors
Electrical supplies
SPICE-compatible blocks

Actuators \& Drivers

Drivers (p. 1-2)
Rotational Actuators (p. 1-2)
Translational Actuators (p. 1-3)

Drivers

Controlled PWM Voltage

H-Bridge
Stepper Motor Driver

Rotational Actuators

DC Motor
FEM-Parameterized Rotary
Actuator
Generic Rotary Actuator
Induction Motor
Piezo Rotary Motor

Servomotor

Shunt Motor

Mechanical control devices
Rotational actuators and motors
Linear actuators and motors

Model pulse-width modulated voltage source

Model H-bridge motor driver
Model stepper motor driver

Model electrical and torque characteristics of DC motor

Model rotary actuator defined in terms of magnetic flux

Model generic rotary actuator driven from DC voltage source or PWM driver

Model induction motor powered by ideal AC supply
Model torque-speed characteristics of rotary piezoelectric traveling wave motor

Model brushless motor with closed-loop torque control

Model electrical and torque characteristics of shunt motor

Stepper Motor
Universal Motor

Model stepper motor
Model electrical and torque characteristics of a universal (or series) motor

Translational Actuators

FEM-Parameterized Linear
Actuator
Generic Linear Actuator

Piezo Linear Motor

Piezo Stack

Solenoid

Model linear actuator defined in terms of magnetic flux

Model generic linear actuator driven from DC voltage source or PWM driver

Model force-speed characteristics of linear piezoelectric traveling wave motor

Model electrical and force characteristics of piezoelectric stacked actuator
Model electrical characteristics and generated force of solenoid

Integrated Circuits

Band-Limited Op-Amp
Comparator
Finite-Gain Op-Amp
Timer

Model band-limited operational amplifier
Model a comparator behaviorally
Model gain-limited operational amplifier
Model timer integrated circuit behaviorally

Logic

CMOS AND	Model CMOS AND gate behaviorally
CMOS Buffer	Model CMOS Buffer gate behaviorally
CMOS NAND	Model CMOS NAND gate behaviorally
CMOS NOR	Model CMOS NOR gate behaviorally
CMOS NOT	Model CMOS NOT gate behaviorally
CMOS OR	Model CMOS OR gate behaviorally
CMOS XOR	Model CMOS XOR gate behaviorally
S-R Latch	Model an S-R Latch behaviorally

Passive Devices

Crystal
Fuse
Potentiometer
Relay
Thermal Resistor
Three-Winding Mutual Inductor
Variable Capacitor
Variable Inductor

Model stable resonator
Model fuse that protects against excessive current

Model rotary or linear-travel potentiometer controlled by physical signal

Model switching and associated delay of relay
Model resistor with thermal port
Model three coupled inductors
Model linear time-varying capacitor
Model linear time-varying inductor

Semiconductor Devices

Diode	Model piecewise linear, piecewise linear zener, or exponential diode
N-Channel IGBT	Model N-Channel IGBT
N-Channel JFET	Model N-Channel JFET Model N-Channel MOSFET using Nhichman-Hodges equation
NPN Bipolar Transistor	Model NPN bipolar transistor using enhanced Ebers-Moll equations
Optocoupler	Model optocoupler as LED, current sensor, and controlled current source
P-Channel JFET	Model P-Channel JFET
P-Channel MOSFET	Model P-Channel MOSFET using Shichman-Hodges equation
PNP Bipolar Transistor	Model PNP bipolar transistor using enhanced Ebers-Moll equations

Sensors

Incremental Shaft Encoder	Model device that converts information about angular shaft position into electrical pulses
Light-Emitting Diode	Model light-emitting diode as exponential diode and current sensor in series
Photodiode	Model photodiode as parallel controlled current source and exponential diode
Proximity Sensor	Model simple distance sensor
PS Sensor	Model generic linear sensor

Strain Gauge
Thermistor
Thermocouple

Sources

Generic Battery
Negative Supply Rail
Positive Supply Rail
Solar Cell

Abstract

Model deformation sensor Model NTC thermistor using B-parameter equation Model sensor that converts thermal potential difference into electrical potential difference

Model simple battery
Model ideal negative supply rail
Model ideal positive supply rail
Model single solar cell

Additional Components/SPICE-Compatible Components

Passive Devices (p. 1-7)
Semiconductor Devices (p. 1-7)

Sources (p. 1-8)
Utilities (p. 1-9)

Passive Devices

Current-Controlled Switch

SPICE Resistor
Voltage-Controlled Switch

SPICE-compatible passive electrical devices

SPICE-compatible circuit components made from semiconductor material

SPICE-compatible electrical supplies System-level parameter specification

Model current-controlled switch with hysteresis
Model SPICE-compatible resistor
Model voltage-controlled switch with hysteresis

Semiconductor Devices

SPICE Diode
SPICE NJFET

SPICE NMOS

SPICE NPN

SPICE PJFET

SPICE PMOS

SPICE PNP

Model SPICE-compatible diode
Model SPICE-compatible N-Channel JFET
Model SPICE-compatible N-Channel
MOSFET
Model Gummel-Poon NPN Transistor

Model SPICE-compatible P-Channel JFET

Model SPICE-compatible P-Channel MOSFET

Model Gummel-Poon PNP Transistor

Sources

DC Current Source	Model constant current source
DC Voltage Source	Model constant voltage source
Exponential Current Source	Model exponential pulse current source
Exponential Voltage Source	Model exponential pulse voltage source
PCCCS	Model polynomial current-controlled current source
PCCCS 2	Model polynomial current-controlled current source with two controlling inputs
PCCVS	Model polynomial current-controlled voltage source
PCCVS2	Model polynomial current-controlled voltage source with two controlling inputs
Pulse Current Source	Model periodic square pulse current source
Pulse Voltage Source	Model periodic square pulse voltage source
PVCCS	Model polynomial voltage-controlled current source
PVCCS2	Model polynomial voltage-controlled current source with two controlling inputs
PVCVS	Model polynomial voltage-controlled voltage source
PVCVS2	Model polynomial voltage-controlled voltage source with two controlling inputs
PWL Current Source	Model lookup table current source

PWL Voltage Source
SFFM Current Source
SFFM Voltage Source
Sinusoidal Current Source
Sinusoidal Voltage Source

Utilities

SPICE Environment Parameters

Model lookup table voltage source
Model single-frequency FM current source

Model single-frequency FM voltage source

Model damped sinusoidal current source

Model damped sinusoidal voltage source

Set parameters that apply to all connected SPICE-compatible blocks

1 Block Reference

Blocks - Alphabetical List

Band-Limited Op-Amp

Purpose Model band-limited operational amplifier

Library

Integrated Circuits

Description The Band-Limited Op-Amp block models a band-limited operational

 amplifier. If the voltages at the positive and negative ports are $V p$ and車 Vm , respectively, the output voltage is:$$
V_{\text {out }}=\frac{A\left(V_{p}-V_{m}\right)}{\frac{s}{2 \pi f}+1}-I_{\text {out }} * R_{\text {out }}
$$

where:

- A is the gain.
- $R_{\text {out }}$ is the output resistance.
- $I_{\text {out }}$ is the output current.
- s is the Laplace operator.
- f is the $3-\mathrm{dB}$ bandwidth.

The input current is:

$$
\frac{V_{p}-V_{m}}{R_{i n}}
$$

where $R_{\text {in }}$ is the input resistance.
The block does not use the initial condition you specify using the Initial output voltage, V0 parameter if you select the Start simulation from steady state check box in the Simscape ${ }^{\mathrm{TM}}$ Solver Configuration block.

Band-Limited Op-Amp

Dialog
 Box and Parameters

Gain, A
The open-loop gain of the operational amplifier. The default value is 1000 .

Band-Limited Op-Amp

Input resistance, Rin

The resistance at the input of the operational amplifier that the block uses to calculate the input current. The default value is $1 \mathrm{e}+06 \Omega$.

Output resistance, Rout

The resistance at the output of the operational amplifier that the block uses to calculate the drop in output voltage due to the output current. The default value is 100Ω.

Minimum output, Vmin

The lower limit on the operational amplifier no-load output voltage. The default value is -15 V .

Maximum output, Vmax
The upper limit on the operational amplifier no-load output voltage. The default value is 15 V .

Maximum slew rate, Vdot

The maximum positive or negative rate of change of output voltage magnitude. The default value is $1000 \mathrm{~V} / \mathrm{s}$.

Bandwidth, f

The open-loop bandwidth, that is, the frequency at which the gain drops by 3 dB compared to the low-frequency gain, A. The default value is $1 \mathrm{e}+05 \mathrm{~Hz}$.

Initial output voltage, V0

The output voltage at the start of the simulation when the output current is zero. The default value is 0 V .

Note This parameter value does not account for the voltage drop across the output resistor.

Ports The block has the following ports:
$+$
Positive electrical voltage.

Band-Limited Op-Amp

Negative electrical voltage.
OUT
Output voltage.
See Also Simscape Op-Amp, Finite-Gain Op-Amp

CMOS AND

Purpose	Model CMOS AND gate behaviorally
Library	Logic

Description The CMOS AND block represents a CMOS AND logic gate behaviorally:

- The block output logic level is HIGH if the logic levels of both of the gate inputs are 1.
- The block output logic level is LOW otherwise.

The block determines the logic levels of the gate inputs as follows:

- If the gate voltage is greater than the threshold voltage, the block interprets the input as logic 1 .
- Otherwise, the block interprets the input as logic 0 .

The threshold voltage is the voltage value at midpoint between the High level input voltage parameter value and the Low level input voltage parameter value.

Note To improve simulation speed, the block does not model all the internal individual MOSFET devices that make up the gate. See "Basic Assumptions and Limitations" on page 2-7 for details.

The block models the gate as follows:

- The gate inputs have infinite resistance and finite or zero capacitance.
- The gate output offers a selection of two models: Linear and Quadratic. For more information, see "Selecting the Output Model for Logic Blocks". Use the Output current-voltage relationship parameter to specify the output model.
- You can specify propagation delay for both output models. For Linear output, the block sets the value of the gate output capacitor such that

CMOS AND

the resistor-capacitor time constant equals the Propagation delay parameter value. For Quadratic output, the gate input demand is lagged to approximate the Propagation delay parameter value.

The block output voltage depends on the output model selected:

- For Linear model, output high is the High level output voltage parameter value, and output low is the Low level output voltage parameter value.
- For Quadratic model, the output voltage for High and Low states is a function of the output current, as explained in "Quadratic Model Output and Parameters". For zero load current, output high is Vcc (the Supply voltage parameter value), and output low is zero volts.

Basic Assumptions and Limitations

The block does not model the internal individual MOSFET devices that make up the gate (except for the final MOSFET pair if you select the Quadratic option for the Output current-voltage relationship parameter). This limitation has the following implications:

- The block does not accurately model the gate's response to input noise and inputs that are around the logic threshold voltage.
- The block does not accurately model dynamic response.

Circuits that involve a feedback path around a set of logic gates may require a nonzero propagation delay to be set on one or more gates.

CMOS AND

Box and Parameters

Dialog Inputs Tab

Low level input voltage

Voltage value below which the block interprets the input voltage as logic LOW. The default value is 2 V .

High level input voltage

Voltage value above which the block interprets the input voltage as logic HIGH. The default value is 3 V .

Average input capacitance

Fixed capacitance that approximates the input capacitance for a MOSFET gate. The MOSFET capacitance depends on the applied voltage. When you drive this block with another gate, the Average input capacitance produces a rise time similar to that of the MOSFET. You can usually find this capacitance value on a manufacturer datasheet. The default value is 5 pF . Setting this value to zero may result in faster simulation times.

CMOS AND

Outputs Tab

CMOS AND

Output current-voltage relationship

Select the output model, Linear or Quadratic. The default value is Linear.

Low level output voltage

Voltage value at the output when the output logic level is LOW. The default value is 0 V . This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

High level output voltage

Voltage value at the output when the output logic level is HIGH. The default value is 5 V . This parameter is available when

CMOS AND

you select the Linear option for the Output current-voltage relationship parameter.

Output resistance

Value of the series output resistor that is used to model the drop in output voltage resulting from the output current. The default value is 25Ω. You can derive this value from a datasheet by dividing the high-level output voltage by the maximum low-level output current. This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

Supply voltage

Supply voltage value applied to the gate in your circuit. The default value is 5 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Measurement voltage

The gate supply voltage for which mask data output resistances and currents are defined. The default value is 5 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic HIGH output resistance at zero current and at I_OH A row vector [$\mathrm{R}_{-} \mathrm{OH} 1 \mathrm{R}_{-} \mathrm{OH} 2$] of two resistance values. The first value $R_{-} O H 1$ is the gradient of the output voltage-current relationship when the gate is logic HIGH and there is no output current. The second value $R_{-} O H 2$ is the gradient of the output voltage-current relationship when the gate is logic HIGH and the output current is $I _O H$. The default value is [25250] Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic HIGH output current I_OH when shorted to ground

The resulting current when the gate is in the logic HIGH state, but the load forces the output voltage to zero. The default value is 63 mA . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

CMOS AND

Logic LOW output resistance at zero current and at I_OL

A row vector [$R _O L 1$ R_OL2] of two resistance values. The first value $R_{-} O L 1$ is the gradient of the output voltage-current relationship when the gate is logic LOW and there is no output current. The second value $R_{-} O L 2$ is the gradient of the output voltage-current relationship when the gate is logic LOW and the output current is $I _O L$. The default value is [30800] Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic LOW output current I_OL when shorted to Vcc

The resulting current when the gate is in the logic LOW state, but the load forces the output voltage to the supply voltage Vcc. The default value is -45 mA . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Propagation delay

Time it takes for the output to swing from LOW to HIGH or HIGH to LOW after the input logic levels change. The default value is 25 ns .

Protection diode on resistance

The gradient of the voltage-current relationship for the protection diodes when forward biased. The default value is 5Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Protection diode forward voltage

The voltage above which the protection diode is turned on. The default value is 0.6 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

CMOS AND

Initial Conditions Tab

Output initial state

Specify whether the initial output state of the block is High or Low. This parameter is used for both linear and quadratic output states, provided that the Propagation delay parameter is greater than zero and the Solver Configuration block does not have the Start simulation from steady state option selected. The default value is Low.

Ports
 The block has the following ports:

A
Electrical input port.
B
Electrical input port.
J
Electrical output port.

CMOS Buffer

Purpose Model CMOS Buffer gate behaviorally

Library

Logic
Description The CMOS Buffer block represents a CMOS Buffer logic gate behaviorally:

- The block output logic level is HIGH if the logic level of the gate input is 1 .
- The block output logic level is LOW otherwise.

The block determines the logic levels of the gate inputs as follows:

- If the gate voltage is greater than the threshold voltage, the block interprets the input as logic 1 .
- Otherwise, the block interprets the input as logic 0 .

The threshold voltage is the voltage value at midpoint between the High level input voltage parameter value and the Low level input voltage parameter value.

Note To improve simulation speed, the block does not model all the internal individual MOSFET devices that make up the gate. See "Basic Assumptions and Limitations" on page 2-15 for details.

The block models the gate as follows:

- The gate inputs have infinite resistance and finite or zero capacitance.
- The gate output offers a selection of two models: Linear and Quadratic. For more information, see "Selecting the Output Model for Logic Blocks". Use the Output current-voltage relationship parameter to specify the output model.

CMOS Buffer

- You can specify propagation delay for both output models. For Linear output, the block sets the value of the gate output capacitor such that the resistor-capacitor time constant equals the Propagation delay parameter value. For Quadratic output, the gate input demand is lagged to approximate the Propagation delay parameter value.

The block output voltage depends on the output model selected:

- For Linear model, output high is the High level output voltage parameter value, and output low is the Low level output voltage parameter value.
- For Quadratic model, the output voltage for High and Low states is a function of the output current, as explained in "Quadratic Model Output and Parameters". For zero load current, output high is Vcc (the Supply voltage parameter value), and output low is zero volts.

Basic
 Assumptions and Limitations

The block does not model the internal individual MOSFET devices that make up the gate (except for the final MOSFET pair if you select the Quadratic option for the Output current-voltage relationship parameter). This limitation has the following implications:

- The block does not accurately model the gate's response to input noise and inputs that are around the logic threshold voltage.
- The block does not accurately model dynamic response.

Circuits that involve a feedback path around a set of logic gates may require a nonzero propagation delay to be set on one or more gates.

CMOS Buffer

Dialog
 Box and Parameters

Inputs Tab

Low level input voltage

Voltage value below which the block interprets the input voltage as logic LOW. The default value is 2 V .

High level input voltage

Voltage value above which the block interprets the input voltage as logic HIGH. The default value is 3 V .

Average input capacitance

Fixed capacitance that approximates the input capacitance for a MOSFET gate. The MOSFET capacitance depends on the applied voltage. When you drive this block with another gate, the Average input capacitance produces a rise time similar to that of the MOSFET. You can usually find this capacitance value on a manufacturer datasheet. The default value is 5 pF . Setting this value to zero may result in faster simulation times.

CMOS Buffer

Outputs Tab

Output current-voltage relationship

Select the output model, Linear or Quadratic. The default value is Linear.

Low level output voltage

Voltage value at the output when the output logic level is LOW. The default value is 0 V . This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

High level output voltage

Voltage value at the output when the output logic level is HIGH. The default value is 5 V . This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

CMOS Buffer

Output resistance

Value of the series output resistor that is used to model the drop in output voltage resulting from the output current. The default value is 25Ω. You can derive this value from a datasheet by dividing the high-level output voltage by the maximum low-level output current. This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

Supply voltage

Supply voltage value applied to the gate in your circuit. The default value is 5 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Measurement voltage

The gate supply voltage for which mask data output resistances and currents are defined. The default value is 5 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic HIGH output resistance at zero current and at I_OH A row vector [$\mathrm{R}_{-} \mathrm{OH} 1 \mathrm{R}_{-} \mathrm{OH} 2$] of two resistance values. The first value $R_{-} O H 1$ is the gradient of the output voltage-current relationship when the gate is logic HIGH and there is no output current. The second value $\mathrm{R}_{-} \mathrm{OH} 2$ is the gradient of the output voltage-current relationship when the gate is logic HIGH and the output current is $I _O H$. The default value is [25250] Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic HIGH output current I_OH when shorted to ground

The resulting current when the gate is in the logic HIGH state, but the load forces the output voltage to zero. The default value is 63 mA . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic LOW output resistance at zero current and at I_OL

A row vector [$R _O L 1$ R_OL2] of two resistance values. The first value $R_{-} O L 1$ is the gradient of the output voltage-current relationship when the gate is logic LOW and there is no output current. The second value $R_{-} O L 2$ is the gradient of the output voltage-current relationship when the gate is logic LOW and the output current is $I _O L$. The default value is [30800] Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic LOW output current I_OL when shorted to Vcc

The resulting current when the gate is in the logic LOW state, but the load forces the output voltage to the supply voltage Vcc. The default value is -45 mA . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Propagation delay

Time it takes for the output to swing from LOW to HIGH or HIGH to LOW after the input logic levels change. The default value is 25 ns .

Protection diode on resistance

The gradient of the voltage-current relationship for the protection diodes when forward biased. The default value is 5Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Protection diode forward voltage

The voltage above which the protection diode is turned on. The default value is 0.6 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

CMOS Buffer

Initial Conditions Tab

Output initial state

Specify whether the initial output state of the block is High or Low. This parameter is used for both linear and quadratic output states, provided that the Propagation delay parameter is greater than zero and the Solver Configuration block does not have the Start simulation from steady state option selected. The default value is Low.

The block has the following ports:

A
Electrical input port.
J
Electrical output port.

CMOS NAND

Purpose	Model CMOS NAND gate behaviorally
Library	Logic

Description The CMOS NAND block represents a CMOS NAND logic gate behaviorally:

- The block output logic level is HIGH if the logic levels of both of the gate inputs are 0 .
- The block output logic level is LOW otherwise.

The block determines the logic levels of the gate inputs as follows:

- If the gate voltage is greater than the threshold voltage, the block interprets the input as logic 1 .
- Otherwise, the block interprets the input as logic 0 .

The threshold voltage is the voltage value at midpoint between the High level input voltage parameter value and the Low level input voltage parameter value.

Note To improve simulation speed, the block does not model all the internal individual MOSFET devices that make up the gate. See "Basic Assumptions and Limitations" on page 2-23 for details.

The block models the gate as follows:

- The gate inputs have infinite resistance and finite or zero capacitance.
- The gate output offers a selection of two models: Linear and Quadratic. For more information, see "Selecting the Output Model for Logic Blocks". Use the Output current-voltage relationship parameter to specify the output model.

CMOS NAND

- You can specify propagation delay for both output models. For Linear output, the block sets the value of the gate output capacitor such that the resistor-capacitor time constant equals the Propagation delay parameter value. For Quadratic output, the gate input demand is lagged to approximate the Propagation delay parameter value.

The block output voltage depends on the output model selected:

- For Linear model, output high is the High level output voltage parameter value, and output low is the Low level output voltage parameter value.
- For Quadratic model, the output voltage for High and Low states is a function of the output current, as explained in "Quadratic Model Output and Parameters". For zero load current, output high is Vcc (the Supply voltage parameter value), and output low is zero volts.

Basic
 Assumptions and Limitations

The block does not model the internal individual MOSFET devices that make up the gate (except for the final MOSFET pair if you select the Quadratic option for the Output current-voltage relationship parameter). This limitation has the following implications:

- The block does not accurately model the gate's response to input noise and inputs that are around the logic threshold voltage.
- The block does not accurately model dynamic response.

Circuits that involve a feedback path around a set of logic gates may require a nonzero propagation delay to be set on one or more gates.

CMOS NAND

Dialog
 Box and Parameters

Inputs Tab

Low level input voltage

Voltage value below which the block interprets the input voltage as logic LOW. The default value is 2 V .

High level input voltage

Voltage value above which the block interprets the input voltage as logic HIGH. The default value is 3 V .

Average input capacitance

Fixed capacitance that approximates the input capacitance for a MOSFET gate. The MOSFET capacitance depends on the applied voltage. When you drive this block with another gate, the Average input capacitance produces a rise time similar to that of the MOSFET. You can usually find this capacitance value on a manufacturer datasheet. The default value is 5 pF . Setting this value to zero may result in faster simulation times.

Outputs Tab

CMOS NAND

Output current-voltage relationship

Select the output model, Linear or Quadratic. The default value is Linear.

Low level output voltage

Voltage value at the output when the output logic level is LOW. The default value is 0 V . This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

High level output voltage

Voltage value at the output when the output logic level is HIGH. The default value is 5 V . This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

CMOS NAND

Output resistance

Value of the series output resistor that is used to model the drop in output voltage resulting from the output current. The default value is 25Ω. You can derive this value from a datasheet by dividing the high-level output voltage by the maximum low-level output current. This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

Supply voltage

Supply voltage value applied to the gate in your circuit. The default value is 5 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Measurement voltage

The gate supply voltage for which mask data output resistances and currents are defined. The default value is 5 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic HIGH output resistance at zero current and at I_OH A row vector [$\mathrm{R}_{-} \mathrm{OH} 1 \mathrm{R}_{-} \mathrm{OH} 2$] of two resistance values. The first value $R_{-} O H 1$ is the gradient of the output voltage-current relationship when the gate is logic HIGH and there is no output current. The second value $\mathrm{R}_{-} \mathrm{OH} 2$ is the gradient of the output voltage-current relationship when the gate is logic HIGH and the output current is $I_{-} O H$. The default value is [25250] Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic HIGH output current I_OH when shorted to ground

The resulting current when the gate is in the logic HIGH state, but the load forces the output voltage to zero. The default value is 63 mA . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

CMOS NAND

Logic LOW output resistance at zero current and at I_OL

A row vector [$R _O L 1$ R_OL2] of two resistance values. The first value $R_{-} O L 1$ is the gradient of the output voltage-current relationship when the gate is logic LOW and there is no output current. The second value $R_{-} O L 2$ is the gradient of the output voltage-current relationship when the gate is logic LOW and the output current is $I _O L$. The default value is [30800] Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic LOW output current I_OL when shorted to Vcc

The resulting current when the gate is in the logic LOW state, but the load forces the output voltage to the supply voltage Vcc. The default value is -45 mA . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Propagation delay

Time it takes for the output to swing from LOW to HIGH or HIGH to LOW after the input logic levels change. The default value is 25 ns .

Protection diode on resistance

The gradient of the voltage-current relationship for the protection diodes when forward biased. The default value is 5Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Protection diode forward voltage

The voltage above which the protection diode is turned on. The default value is 0.6 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

CMOS NAND

Initial Conditions Tab

Output initial state

Specify whether the initial output state of the block is High or Low. This parameter is used for both linear and quadratic output states, provided that the Propagation delay parameter is greater than zero and the Solver Configuration block does not have the Start simulation from steady state option selected. The default value is Low.

The block has the following ports:

A
Electrical input port.
B
Electrical input port.
J
Electrical output port.

CMOS NOR

Purpose	Model CMOS NOR gate behaviorally
Library	Logic

Description The CMOS NOR block represents a CMOS NOR logic gate behaviorally:

- The block output logic level is LOW if the logic levels of any of the gate inputs are 1.
- The block output logic level is HIGH otherwise.

The block determines the logic levels of the gate inputs as follows:

- If the gate voltage is greater than the threshold voltage, the block interprets the input as logic 1 .
- Otherwise, the block interprets the input as logic 0 .

The threshold voltage is the voltage value at midpoint between the High level input voltage parameter value and the Low level input voltage parameter value.

Note To improve simulation speed, the block does not model all the internal individual MOSFET devices that make up the gate. See "Basic Assumptions and Limitations" on page 2-31 for details.

The block models the gate as follows:

- The gate inputs have infinite resistance and finite or zero capacitance.
- The gate output offers a selection of two models: Linear and Quadratic. For more information, see "Selecting the Output Model for Logic Blocks". Use the Output current-voltage relationship parameter to specify the output model.
- You can specify propagation delay for both output models. For Linear output, the block sets the value of the gate output capacitor such that

CMOS NOR

the resistor-capacitor time constant equals the Propagation delay parameter value. For Quadratic output, the gate input demand is lagged to approximate the Propagation delay parameter value.

The block output voltage depends on the output model selected:

- For Linear model, output high is the High level output voltage parameter value, and output low is the Low level output voltage parameter value.
- For Quadratic model, the output voltage for High and Low states is a function of the output current, as explained in "Quadratic Model Output and Parameters". For zero load current, output high is Vcc (the Supply voltage parameter value), and output low is zero volts.

Basic Assumptions and Limitations

The block does not model the internal individual MOSFET devices that make up the gate (except for the final MOSFET pair if you select the Quadratic option for the Output current-voltage relationship parameter). This limitation has the following implications:

- The block does not accurately model the gate's response to input noise and inputs that are around the logic threshold voltage.
- The block does not accurately model dynamic response.

Circuits that involve a feedback path around a set of logic gates may require a nonzero propagation delay to be set on one or more gates.

CMOS NOR

Box and Parameters

Dialog Inputs Tab

Low level input voltage

Voltage value below which the block interprets the input voltage as logic LOW. The default value is 2 V .

High level input voltage

Voltage value above which the block interprets the input voltage as logic HIGH. The default value is 3 V .

Average input capacitance

Fixed capacitance that approximates the input capacitance for a MOSFET gate. The MOSFET capacitance depends on the applied voltage. When you drive this block with another gate, the Average input capacitance produces a rise time similar to that of the MOSFET. You can usually find this capacitance value on a manufacturer datasheet. The default value is 5 pF . Setting this value to zero may result in faster simulation times.

CMOS NOR

Outputs Tab

CMOS NOR

Output current-voltage relationship

Select the output model, Linear or Quadratic. The default value is Linear.

Low level output voltage

Voltage value at the output when the output logic level is LOW. The default value is 0 V . This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

High level output voltage

Voltage value at the output when the output logic level is HIGH. The default value is 5 V . This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

CMOS NOR

Output resistance

Value of the series output resistor that is used to model the drop in output voltage resulting from the output current. The default value is 25Ω. You can derive this value from a datasheet by dividing the high-level output voltage by the maximum low-level output current. This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

Supply voltage

Supply voltage value applied to the gate in your circuit. The default value is 5 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Measurement voltage

The gate supply voltage for which mask data output resistances and currents are defined. The default value is 5 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic HIGH output resistance at zero current and at I_OH A row vector [$\mathrm{R}_{-} \mathrm{OH} 1 \mathrm{R}_{-} \mathrm{OH} 2$] of two resistance values. The first value $R_{-} O H 1$ is the gradient of the output voltage-current relationship when the gate is logic HIGH and there is no output current. The second value $\mathrm{R}_{-} \mathrm{OH} 2$ is the gradient of the output voltage-current relationship when the gate is logic HIGH and the output current is $I _O H$. The default value is [25250] Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic HIGH output current I_OH when shorted to ground

The resulting current when the gate is in the logic HIGH state, but the load forces the output voltage to zero. The default value is 63 mA . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

CMOS NOR

Logic LOW output resistance at zero current and at I_OL

A row vector [$R _O L 1$ R_OL2] of two resistance values. The first value $R_{-} O L 1$ is the gradient of the output voltage-current relationship when the gate is logic LOW and there is no output current. The second value $R_{-} O L 2$ is the gradient of the output voltage-current relationship when the gate is logic LOW and the output current is $I _O L$. The default value is [30800] Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic LOW output current I_OL when shorted to Vcc

The resulting current when the gate is in the logic LOW state, but the load forces the output voltage to the supply voltage Vcc. The default value is -45 mA . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Propagation delay

Time it takes for the output to swing from LOW to HIGH or HIGH to LOW after the input logic levels change. The default value is 25 ns .

Protection diode on resistance

The gradient of the voltage-current relationship for the protection diodes when forward biased. The default value is 5Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Protection diode forward voltage

The voltage above which the protection diode is turned on. The default value is 0.6 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

CMOS NOR

Initial Conditions Tab

Output initial state

Specify whether the initial output state of the block is High or Low. This parameter is used for both linear and quadratic output states, provided that the Propagation delay parameter is greater than zero and the Solver Configuration block does not have the Start simulation from steady state option selected. The default value is Low.

The block has the following ports:

A
Electrical input port.
B
Electrical input port.
J
Electrical output port.

CMOS NOT

Purpose Model CMOS NOT gate behaviorally
Library
Logic
Description The CMOS NOT block represents a CMOS NOT logic gate behaviorally:

- The block output logic level is HIGH if the logic level of the gate input is 0 .
- The block output logic level is LOW otherwise.

The block determines the logic levels of the gate inputs as follows:

- If the gate voltage is greater than the threshold voltage, the block interprets the input as logic 1.
- Otherwise, the block interprets the input as logic 0.

The threshold voltage is the voltage value at midpoint between the High level input voltage parameter value and the Low level input voltage parameter value.

Note To improve simulation speed, the block does not model all the internal individual MOSFET devices that make up the gate. See "Basic Assumptions and Limitations" on page 2-39 for details.

The block models the gate as follows:

- The gate inputs have infinite resistance and finite or zero capacitance.
- The gate output offers a selection of two models: Linear and Quadratic. For more information, see "Selecting the Output Model for Logic Blocks". Use the Output current-voltage relationship parameter to specify the output model.
- You can specify propagation delay for both output models. For Linear output, the block sets the value of the gate output capacitor such that the resistor-capacitor time constant equals the Propagation delay parameter value. For Quadratic output, the gate input demand is lagged to approximate the Propagation delay parameter value.

The block output voltage depends on the output model selected:

- For Linear model, output high is the High level output voltage parameter value, and output low is the Low level output voltage parameter value.
- For Quadratic model, the output voltage for High and Low states is a function of the output current, as explained in "Quadratic Model Output and Parameters". For zero load current, output high is Vcc (the Supply voltage parameter value), and output low is zero volts.

Basic
 Assumptions and Limitations

The block does not model the internal individual MOSFET devices that make up the gate (except for the final MOSFET pair if you select the Quadratic option for the Output current-voltage relationship parameter). This limitation has the following implications:

- The block does not accurately model the gate's response to input noise and inputs that are around the logic threshold voltage.
- The block does not accurately model dynamic response.

Circuits that involve a feedback path around a set of logic gates may require a nonzero propagation delay to be set on one or more gates.

CMOS NOT

Box and Parameters

Dialog Inputs Tab

Low level input voltage

Voltage value below which the block interprets the input voltage as logic LOW. The default value is 2 V .

High level input voltage

Voltage value above which the block interprets the input voltage as logic HIGH. The default value is 3 V .

Average input capacitance

Fixed capacitance that approximates the input capacitance for a MOSFET gate. The MOSFET capacitance depends on the applied voltage. When you drive this block with another gate, the Average input capacitance produces a rise time similar to that of the MOSFET. You can usually find this capacitance value on a manufacturer datasheet. The default value is 5 pF . Setting this value to zero may result in faster simulation times.

Outputs Tab

CMOS NOT

Output current-voltage relationship

Select the output model, Linear or Quadratic. The default value is Linear.

Low level output voltage

Voltage value at the output when the output logic level is LOW. The default value is 0 V . This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

High level output voltage

Voltage value at the output when the output logic level is HIGH. The default value is 5 V . This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

Output resistance

Value of the series output resistor that is used to model the drop in output voltage resulting from the output current. The default value is 25Ω. You can derive this value from a datasheet by dividing the high-level output voltage by the maximum low-level output current. This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

Supply voltage

Supply voltage value applied to the gate in your circuit. The default value is 5 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Measurement voltage

The gate supply voltage for which mask data output resistances and currents are defined. The default value is 5 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic HIGH output resistance at zero current and at I_OH A row vector [$\mathrm{R}_{-} \mathrm{OH} 1 \quad \mathrm{R} _\mathrm{OH} 2$] of two resistance values. The first value $R_{-} O H 1$ is the gradient of the output voltage-current relationship when the gate is logic HIGH and there is no output current. The second value $R_{-} O H 2$ is the gradient of the output voltage-current relationship when the gate is logic HIGH and the output current is $I _O H$. The default value is [25250] Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic HIGH output current I_OH when shorted to ground

The resulting current when the gate is in the logic HIGH state, but the load forces the output voltage to zero. The default value is 63 mA . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

CMOS NOT

Logic LOW output resistance at zero current and at I_OL

A row vector [$R _O L 1$ R_OL2] of two resistance values. The first value $R_{-} O L 1$ is the gradient of the output voltage-current relationship when the gate is logic LOW and there is no output current. The second value $R_{-} O L 2$ is the gradient of the output voltage-current relationship when the gate is logic LOW and the output current is $I _O L$. The default value is [30800] Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic LOW output current I_OL when shorted to Vcc

The resulting current when the gate is in the logic LOW state, but the load forces the output voltage to the supply voltage Vcc. The default value is -45 mA . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Propagation delay

Time it takes for the output to swing from LOW to HIGH or HIGH to LOW after the input logic levels change. The default value is 25 ns .

Protection diode on resistance

The gradient of the voltage-current relationship for the protection diodes when forward biased. The default value is 5Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Protection diode forward voltage

The voltage above which the protection diode is turned on. The default value is 0.6 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Initial Conditions Tab

Output initial state

Specify whether the initial output state of the block is High or Low. This parameter is used for both linear and quadratic output states, provided that the Propagation delay parameter is greater than zero and the Solver Configuration block does not have the Start simulation from steady state option selected. The default value is Low.

The block has the following ports:
A
Electrical input port.
J
Electrical output port.

CMOS OR

Purpose	Model CMOS OR gate behaviorally
Library	Logic

Description The CMOS OR block represents a CMOS OR logic gate behaviorally:

- The block output logic level is HIGH if the logic levels of any of the gate inputs are 1.
- The block output logic level is LOW otherwise.

The block determines the logic levels of the gate inputs as follows:

- If the gate voltage is greater than the threshold voltage, the block interprets the input as logic 1.
- Otherwise, the block interprets the input as logic 0 .

The threshold voltage is the voltage value at midpoint between the High level input voltage parameter value and the Low level input voltage parameter value.

Note To improve simulation speed, the block does not model all the internal individual MOSFET devices that make up the gate. See "Basic Assumptions and Limitations" on page 2-47 for details.

The block models the gate as follows:

- The gate inputs have infinite resistance and finite or zero capacitance.
- The gate output offers a selection of two models: Linear and Quadratic. For more information, see "Selecting the Output Model for Logic Blocks". Use the Output current-voltage relationship parameter to specify the output model.
- You can specify propagation delay for both output models. For Linear output, the block sets the value of the gate output capacitor such that

CMOS OR

the resistor-capacitor time constant equals the Propagation delay parameter value. For Quadratic output, the gate input demand is lagged to approximate the Propagation delay parameter value.

The block output voltage depends on the output model selected:

- For Linear model, output high is the High level output voltage parameter value, and output low is the Low level output voltage parameter value.
- For Quadratic model, the output voltage for High and Low states is a function of the output current, as explained in "Quadratic Model Output and Parameters". For zero load current, output high is Vcc (the Supply voltage parameter value), and output low is zero volts.

Basic Assumptions and Limitations

The block does not model the internal individual MOSFET devices that make up the gate (except for the final MOSFET pair if you select the Quadratic option for the Output current-voltage relationship parameter). This limitation has the following implications:

- The block does not accurately model the gate's response to input noise and inputs that are around the logic threshold voltage.
- The block does not accurately model dynamic response.

Circuits that involve a feedback path around a set of logic gates may require a nonzero propagation delay to be set on one or more gates.

CMOS OR

Box and Parameters

Dialog Inputs Tab

Low level input voltage

Voltage value below which the block interprets the input voltage as logic LOW. The default value is 2 V .

High level input voltage

Voltage value above which the block interprets the input voltage as logic HIGH. The default value is 3 V .

Average input capacitance

Fixed capacitance that approximates the input capacitance for a MOSFET gate. The MOSFET capacitance depends on the applied voltage. When you drive this block with another gate, the Average input capacitance produces a rise time similar to that of the MOSFET. You can usually find this capacitance value on a manufacturer datasheet. The default value is 5 pF . Setting this value to zero may result in faster simulation times.

Outputs Tab

CMOS OR

Output current-voltage relationship

Select the output model, Linear or Quadratic. The default value is Linear.

Low level output voltage

Voltage value at the output when the output logic level is LOW. The default value is 0 V . This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

High level output voltage

Voltage value at the output when the output logic level is HIGH. The default value is 5 V . This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

Output resistance

Value of the series output resistor that is used to model the drop in output voltage resulting from the output current. The default value is 25Ω. You can derive this value from a datasheet by dividing the high-level output voltage by the maximum low-level output current. This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

Supply voltage

Supply voltage value applied to the gate in your circuit. The default value is 5 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Measurement voltage

The gate supply voltage for which mask data output resistances and currents are defined. The default value is 5 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic HIGH output resistance at zero current and at I_OH A row vector [$\mathrm{R}_{-} \mathrm{OH} 1 \mathrm{R}_{-} \mathrm{OH} 2$] of two resistance values. The first value $R_{-} O H 1$ is the gradient of the output voltage-current relationship when the gate is logic HIGH and there is no output current. The second value $R_{-} O H 2$ is the gradient of the output voltage-current relationship when the gate is logic HIGH and the output current is $I _O H$. The default value is [25250] Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic HIGH output current I_OH when shorted to ground

The resulting current when the gate is in the logic HIGH state, but the load forces the output voltage to zero. The default value is 63 mA . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

CMOS OR

Logic LOW output resistance at zero current and at I_OL

A row vector [$R _O L 1$ R_OL2] of two resistance values. The first value $R_{-} O L 1$ is the gradient of the output voltage-current relationship when the gate is logic LOW and there is no output current. The second value $R_{-} O L 2$ is the gradient of the output voltage-current relationship when the gate is logic LOW and the output current is $I _O L$. The default value is [30800] Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic LOW output current I_OL when shorted to Vcc
The resulting current when the gate is in the logic LOW state, but the load forces the output voltage to the supply voltage Vcc. The default value is -45 mA . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Propagation delay

Time it takes for the output to swing from LOW to HIGH or HIGH to LOW after the input logic levels change. The default value is 25 ns .

Protection diode on resistance

The gradient of the voltage-current relationship for the protection diodes when forward biased. The default value is 5Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Protection diode forward voltage

The voltage above which the protection diode is turned on. The default value is 0.6 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Initial Conditions Tab

Output initial state

Specify whether the initial output state of the block is High or Low. This parameter is used for both linear and quadratic output states, provided that the Propagation delay parameter is greater than zero and the Solver Configuration block does not have the Start simulation from steady state option selected. The default value is Low.

Ports

The block has the following ports:
A
Electrical input port.
B
Electrical input port.
J
Electrical output port.

CMOS XOR

Purpose	Model CMOS XOR gate behaviorally
Library	Logic

Description The CMOS XOR block represents a CMOS XOR logic gate behaviorally:

- The block output logic level is HIGH if the logic level of exactly one of the gate inputs is 1 .
- The block output logic level is LOW otherwise.

The block determines the logic levels of the gate inputs as follows:

- If the gate voltage is greater than the threshold voltage, the block interprets the input as logic 1.
- Otherwise, the block interprets the input as logic 0 .

The threshold voltage is the voltage value at midpoint between the High level input voltage parameter value and the Low level input voltage parameter value.

Note To improve simulation speed, the block does not model all the internal individual MOSFET devices that make up the gate. See "Basic Assumptions and Limitations" on page 2-55 for details.

The block models the gate as follows:

- The gate inputs have infinite resistance and finite or zero capacitance.
- The gate output offers a selection of two models: Linear and Quadratic. For more information, see "Selecting the Output Model for Logic Blocks". Use the Output current-voltage relationship parameter to specify the output model.
- You can specify propagation delay for both output models. For Linear output, the block sets the value of the gate output capacitor such that

CMOS XOR

the resistor-capacitor time constant equals the Propagation delay parameter value. For Quadratic output, the gate input demand is lagged to approximate the Propagation delay parameter value.

The block output voltage depends on the output model selected:

- For Linear model, output high is the High level output voltage parameter value, and output low is the Low level output voltage parameter value.
- For Quadratic model, the output voltage for High and Low states is a function of the output current, as explained in "Quadratic Model Output and Parameters". For zero load current, output high is Vcc (the Supply voltage parameter value), and output low is zero volts.

Basic Assumptions and Limitations

The block does not model the internal individual MOSFET devices that make up the gate (except for the final MOSFET pair if you select the Quadratic option for the Output current-voltage relationship parameter). This limitation has the following implications:

- The block does not accurately model the gate's response to input noise and inputs that are around the logic threshold voltage.
- The block does not accurately model dynamic response.

Circuits that involve a feedback path around a set of logic gates may require a nonzero propagation delay to be set on one or more gates.

CMOS XOR

Box and Parameters

Dialog Inputs Tab

Low level input voltage

Voltage value below which the block interprets the input voltage as logic LOW. The default value is 2 V .

High level input voltage

Voltage value above which the block interprets the input voltage as logic HIGH. The default value is 3 V .

Average input capacitance

Fixed capacitance that approximates the input capacitance for a MOSFET gate. The MOSFET capacitance depends on the applied voltage. When you drive this block with another gate, the Average input capacitance produces a rise time similar to that of the MOSFET. You can usually find this capacitance value on a manufacturer datasheet. The default value is 5 pF . Setting this value to zero may result in faster simulation times.

Outputs Tab

CMOS XOR

Output current-voltage relationship

Select the output model, Linear or Quadratic. The default value is Linear.

Low level output voltage

Voltage value at the output when the output logic level is LOW. The default value is 0 V . This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

High level output voltage

Voltage value at the output when the output logic level is HIGH. The default value is 5 V . This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

Output resistance

Value of the series output resistor that is used to model the drop in output voltage resulting from the output current. The default value is 25Ω. You can derive this value from a datasheet by dividing the high-level output voltage by the maximum low-level output current. This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

Supply voltage

Supply voltage value applied to the gate in your circuit. The default value is 5 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Measurement voltage

The gate supply voltage for which mask data output resistances and currents are defined. The default value is 5 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic HIGH output resistance at zero current and at I_OH A row vector [$\mathrm{R}_{-} \mathrm{OH} 1 \mathrm{R}_{-} \mathrm{OH} 2$] of two resistance values. The first value $R_{-} O H 1$ is the gradient of the output voltage-current relationship when the gate is logic HIGH and there is no output current. The second value $R_{-} O H 2$ is the gradient of the output voltage-current relationship when the gate is logic HIGH and the output current is $I _O H$. The default value is [25250] Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic HIGH output current I_OH when shorted to ground

The resulting current when the gate is in the logic HIGH state, but the load forces the output voltage to zero. The default value is 63 mA . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

CMOS XOR

Logic LOW output resistance at zero current and at I_OL

A row vector [$R _O L 1$ R_OL2] of two resistance values. The first value $R_{-} O L 1$ is the gradient of the output voltage-current relationship when the gate is logic LOW and there is no output current. The second value $R_{-} O L 2$ is the gradient of the output voltage-current relationship when the gate is logic LOW and the output current is $I _O L$. The default value is [30800] Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic LOW output current I_OL when shorted to Vcc

The resulting current when the gate is in the logic LOW state, but the load forces the output voltage to the supply voltage Vcc. The default value is -45 mA . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Propagation delay

Time it takes for the output to swing from LOW to HIGH or HIGH to LOW after the input logic levels change. The default value is 25 ns .

Protection diode on resistance

The gradient of the voltage-current relationship for the protection diodes when forward biased. The default value is 5Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Protection diode forward voltage

The voltage above which the protection diode is turned on. The default value is 0.6 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Initial Conditions Tab

Output initial state

Specify whether the initial output state of the block is High or Low. This parameter is used for both linear and quadratic output states, provided that the Propagation delay parameter is greater than zero and the Solver Configuration block does not have the Start simulation from steady state option selected. The default value is Low.

The block has the following ports:
A
Electrical input port.
B
Electrical input port.
J
Electrical output port.

Comparator

Purpose Model a comparator behaviorally
Library
Integrated Circuits
Description The Comparator block is an abstracted behavioral model of a comparator integrated circuit. It does not model an internal transistor-level implementation. Therefore, the block runs quickly during simulation but retains the correct I/O behavior. The block models differential inputs electrically as having infinite resistance and a finite or zero capacitance.

The block models the gate output as a voltage source driving a series resistor and a capacitor that connects to ground. The output pin connects to the resistor-capacitor connection node. If the difference in the inputs is greater than the input threshold voltage, then the output is equal to the High level output voltage ($V_{O L}$). Otherwise, the output is equal to the Low level output voltage ($V_{O H}$).

The output model is shown in the following illustration.

Basic Assumptions and Limitations

Modeling of the output as a controlled voltage source is representative of a totem-pole or push-pull output stage. To model a device with an open-collector:

1 Connect the output pin to the base of an NPN Bipolar Transistor or PNP Bipolar Transistor block.

2 Set the Output resistance parameter to a suitable value.

Comparator

Dialog Inputs Tab

Box and Parameters

Input offset voltage

The voltage which the difference in the input voltages must be greater than so that the comparator gives a logic output 1. The default value is 5 mV .

Average input capacitance

You can usually find this capacitance value on a manufacturer datasheet. The default value is 0 pF . Setting this value to zero can result in faster simulation times.

Outputs Tab

Low level output voltage

The steady-state output voltage, $V_{O L}$, when the voltage difference across the inputs is less than or equal to the threshold voltage, and the output current is zero. The default value is 0 V .

High level output voltage

The steady-state output voltage, $V_{O H}$, when the voltage difference across the inputs is greater than the threshold voltage, and the output current is zero. The default value is 5 V .

Output resistance

This parameter is the ratio of output voltage drop to output current. Set this parameter to $\left(V_{O H}-V_{O H 1}\right) / I_{O H 1}$, where $V_{O H 1}$ is the reduced output high voltage when the output current is
$I_{O H 1}$. The default value is 50Ω.

Propagation delay

Set this value based on the high-to-low and low-to-high propagation delays. The default value is 0 s .

Comparator

Ports This block has the following ports:
$+$
Positive electrical input port.Negative electrical input port.OUTElectrical output port.
See Also CMOS Buffer .

Controlled PWM Voltage

Purpose

Model pulse-width modulated voltage source

Library

Description

Basic Assumptions and Limitations

Drivers its + ref and -ref ports. The duty cycle is

$$
100 * \frac{V_{\text {ref }}-V_{\min }}{V_{\max }-V_{\min }} \text { percent }
$$

where:

- $V_{\min }$ is the minimum reference voltage
- $V_{\max }$ is the maximum reference voltage

The value of the Output voltage amplitude parameter determines amplitude of the output voltage.

At time zero, the pulse is initialized as high, unless the duty cycle is set to zero.

The model is based on the following assumptions:

- The REF output of this block is floating, i.e. it is not tied to the

The Controlled PWM Voltage block represents a pulse-width modulated (PWM) voltage source that depends on the reference voltage $V_{\text {ref }}$ across Electrical Reference. One consequence of this is that if you connect the PWM and REF electrical ports directly to the H-Bridge PWM and REF electrical ports, you must attach an Electrical Reference block to the REF connection line.

- Do not use the Controlled PWM block to drive a motor block directly. A PWM motor driver goes open circuit in between pulses. Use the H -Bridge block to drive a motor block.
- When driving a motor via the H-Bridge block, set the Simulation mode parameter to Averaged to speed up simulations. You must also set the Simulation mode parameter of the H-Bridge block to Averaged mode. This applies the average of the demanded

Controlled PWM Voltage

PWM voltage to the motor. The Averaged mode assumes that the impedance of the motor inductive term is small at the PWM frequency. To verify this assumption, run the simulation using the PWM mode and compare the results to those obtained from using the Averaged mode.

- If you are linearizing your model, set the Simulation mode parameter to Averaged and ensure that you have specified the operating point of the block correctly. You can only linearize the block for inputs corresponding to a duty cycle greater than zero and less than 100 percent.

Controlled PWM Voltage

PWM frequency

Frequency of the PWM output signal. The default value is 1000 Hz.

Input value Vmin for 0\% duty cycle

Value of the input voltage at which the PWM signal has a 0% duty cycle. The default value is 0 V .

Input value Vmax for $\mathbf{1 0 0 \%}$ duty cycle

Value of the input voltage at which the PWM signal has a 100% duty cycle. The default value is 5 V .

Output voltage amplitude

Amplitude of the PWM signal when the output is high. The default value is 5 V .

Simulation mode

The type of output voltage can be PWM or Averaged. The default mode, PWM, produces a pulse-width modulated signal. In Averaged mode, the output is a constant whose value is equal to the average value of the PWM signal.

Ports	The block has the following ports:
	+ref
	Positive electrical reference voltage.
	-ref
	Negative electrical reference voltage.
	PWM
	Pulse-width modulated signal.
	REF
	Floating zero volt reference.
Examples	See the Linear Electrical Actuator (System-Level Model) and Linear Electrical Actuator (Implementation Model) demos.
See Also	Stepper Motor Driver

Crystal

Purpose Model stable resonator

Library Passive Devices
Description The Crystal block represents the electrical characteristics of a crystal. The following figure shows the equivalent circuit model of the Crystal block.

You specify the equivalent circuit parameters for this model when you set the Parameterization parameter to Equivalent circuit parameters.

- The capacitor $C 0$ corresponds to the capacitance you specify in the Shunt capacitance, C0 parameter.
- The capacitor C1 corresponds to the capacitance you specify in the Motional capacitance, C1 parameter.
- The inductor L1 corresponds to the inductance you specify in the Motional inductance, L1 parameter.
- The resistor $R 1$ corresponds to the resistance you specify in the Equivalent series resistance, R1 parameter.

Most datasheets specify crystal frequency rather than inductance, so the block optionally accepts frequency data.

- When you set the Parameterization parameter to Series resonance data, the block uses the following relationship to calculate L1 from the series resonant frequency:

$$
f_{s}=\frac{1}{2 \pi \sqrt{L_{1} C_{1}}}
$$

Where f_{s} is the Series resonance, fs parameter value.

- When you set the Parameterization parameter to Parallel resonance data, the block uses the following relationship to calculate $L 1$ from the parallel resonant frequency:

$$
f_{a}=\frac{1}{2 \pi \sqrt{L_{1} C_{1}\left(C_{0}+C_{L}\right) /\left(C_{1}+C_{0}+C_{L}\right)}}
$$

Where:

- f_{a} is the Parallel resonance, fa parameter value.
- C_{L} is the Load capacitance, CL parameter value.

Some datasheets specify quality factor rather than equivalent series resistance, so the block optionally accepts quality factor data. When you set the R1 parameterization parameter to Quality factor Q, the block uses the following relationship to calculate $R 1$ from the quality factor:

$$
Q=\frac{2 \pi f L_{1}}{R_{1}}
$$

Where Q is the $\mathbf{Q u a l i t y}$ factor, \mathbf{Q} parameter value.

> Note The R1 parameterization parameter is only visible when you select Series resonance data or Parallel resonance data for the Parameterization parameter.

Basic
 The Crystal block models only the fundamental crystal vibration mode.
 Assumptions and Limitations

Dialog Box and Parameters

Parameterization

Select one of the following methods for block parameterization:

- Series resonance data - Provide series resonant frequency and capacitance data for the crystal. This method is the default.
- Parallel resonance data - Provide parallel resonant frequency and capacitance data for the crystal.
- Equivalent circuit parameters - Provide electrical parameters for an equivalent circuit model of the crystal.

Series resonance, fs

Crystal series resonant frequency. This parameter is only visible when you select Series resonance data for the Parameterization parameter. The default value is 32.764 kHz .

Parallel resonance, fa

Crystal parallel resonant frequency that corresponds to operating with a parallel load capacitance specified by the Load capacitance, CL parameter. This parameter is only visible when you select Parallel resonance data for the Parameterization parameter. The default value is 32.768 kHz .

Motional inductance, L1

Inductance that represents the mechanical mass of the crystal. This parameter is only visible when you select Equivalent circuit parameters for the Parameterization parameter. The default value is $6.742 \mathrm{e}+03 \mathrm{H}$.

R1 parameterization

Select one of the following methods for series resistance parameterization:

- Equivalent series resistance R1 - Provide the resistance value directly. This is the default method.
- Quality factor Q - Provide the quality factor that the block uses to calculate the resistance value.
This parameter is only visible when you select Series resonance data or Parallel resonance data for the Parameterization parameter.
Quality factor, \mathbf{Q}
Crystal quality factor. This parameter is only visible when you make one of the following selections:
- Series resonance data for the Parameterization parameter and Quality factor Q for the R1 parameterization parameter
- Parallel resonance data for the Parameterization parameter and Quality factor Q for the R1 parameterization parameter
The default value is $9 \mathrm{e}+04$.

Equivalent series resistance, R1

Motional damping term. This parameter is only visible when you make one of the following selections:

- Series resonance data for the Parameterization parameter and Equivalent series resistance R1 for the R1 parameterization parameter
- Parallel resonance data for the Parameterization parameter and Equivalent series resistance R1 for the R1 parameterization parameter
- Equivalent circuit parameters for the Parameterization parameter
The default value is $15 \mathrm{k} \Omega$.

Motional capacitance, C1

Capacitance that represents crystal mechanical stiffness under load. The default value is 0.0035 pF .

Load capacitance, CL

Load capacitance that corresponds to the Parallel resonance, fa parameter value. This parameter is only visible when you select Parallel resonance data for the Parameterization parameter. The default value is 12.5 pF .

Shunt capacitance, C0

Electrical capacitance between the two crystal electrical connections. The parameter value must be greater than zero. The default value is 1.6 pF .

Initial voltage

The output voltage at the start of the simulation when the output current is zero. The default value is 0 V .

Ports The block has the following ports:

Positive electrical port.

Negative electrical port.

Current-Controlled Switch

Purpose
 Library
 Description

Model current-controlled switch with hysteresis

SPICE-Compatible Components/Passive Devices

Basic Assumptions and Limitations

The block output resistance model is discontinuous during switching. The discontinuity might cause numerical issues. Try the following actions to resolve the issues:

- Set the On resistance, RON and Off resistance, ROFF parameter values to keep the ratio $R O N / R O F F$ as small as possible, and less than $1 \mathrm{e}+12$.
- Increase the Hysteresis current, IH parameter value to reduce switch chatter.
- Decrease the Max step size parameter value (in the Configuration Parameters block dialog box).

Current-Controlled Switch

Dialog
 Box and Parameters

Note This increases the simulation time.

(Block Parameters: Current-Controlled Switch					\times
Current-Controlled Switch The block represents a current controlled switch. If the controling current is greater than the sum of the threshold current and the hysteresis current the switch is closed and its resistance value is RON. If the controlling current is less than the difference of the threshold current minus the hysteresis current then the switch is open and its resistance value is ROFF. If the controlling current value is within the crossover region, the switch position is unchanged.					
Parameters					
Threshold current, IT:	0				\square
Hysteresis current, IH:	0				\checkmark
On resistance, RON:	1			Ohm	\square
Off resistance, ROFF:	$1 \mathrm{e}+12$			Ohm	\checkmark
Initial switch state:	On				\checkmark
		OK	Cancel	Help	Apply

Threshold current, IT

The current above which the block interprets the controlling current as HIGH. The default value is 0 A .

Note The controlling current must differ from the threshold current by at least the Hysteresis current, IH parameter value to change the state of the switch.

Hysteresis current, IH

The amount by which the controlling current must exceed or fall below the Threshold current, IT parameter value to change the state of the switch. The default value is 0 A .

Current-Controlled Switch

On resistance, RON

The resistance of the switch when it is closed. The default value is 1Ω.

Off resistance, ROFF

The resistance of the switch when it is open. The default value is $1 \mathrm{e}+12 \Omega$.

Initial switch state

Select one of the following options for the state of the switch at the start of the simulation:

- On - The switch is initially closed and its resistance value is equal to the On resistance, RON parameter value. This is the default option.
- Off - The switch is initially open and its resistance value is equal to the Off resistance, ROFF parameter value.

Ports

The block has the following ports:
$+$
Positive electrical input and output ports.

Negative electrical input and output ports.

Purpose

Model constant current source

Library

Description

Dialog
Box and
Parameters
SPICE-Compatible Components/Sources terminals. device and has a conductance GMIN: default value is $1 \mathrm{e}-12$. to the desired value.

The DC Current Source block represents a constant current source whose output current value is independent of the voltage across its

The block uses a small conductance internally to prevent numerical simulation issues. The conductance connects the + and - ports of the

- By default, GMIN matches the Minimum conductance GMIN parameter of the SPICE Environment Parameters block, whose
- To change GMIN, add a SPICE Environment Parameters block to your model and set the Minimum conductance GMIN parameter

Constant value, DC

The value of the DC output current. The default value is 0 A .

Ports

The block has the following ports:

DC Current Source

$+$
Positive electrical voltage.

Negative electrical voltage.
See Also DC Voltage Source

Purpose

Model electrical and torque characteristics of DC motor

Library

Description

Rotational Actuators
The DC Motor block represents the electrical and torque characteristics of a DC motor using the following equivalent circuit model:

You specify the equivalent circuit parameters for this model when you set the Model parameterization parameter to By equivalent circuit parameters. The resistor R corresponds to the resistance you specify in the Armature resistance parameter. The inductor L corresponds to the inductance you specify in the Armature inductance parameter. The permanent magnets in the motor induce the following back emf v_{b} in the armature:

$$
v_{b}=k_{v} \omega
$$

where k_{v} is the Back-emf constant and ω is the angular velocity. The motor produces the following torque, which is proportional to the motor current i :

$$
T=k_{t} i
$$

where k_{t} is the Torque constant. The DC Motor block assumes that there are no electromagnetic losses. This means that mechanical power is equal to the electrical power dissipated by the back emf in the armature. Equating these two terms gives:

$$
\begin{aligned}
& T \omega=v_{b} i \\
& k_{t} i \omega=k_{v} \omega i \\
& k_{v}=k_{t}
\end{aligned}
$$

As a result, you specify either k_{v} or k_{t} in the block dialog box.
The torque-speed characteristic for the DC Motor block is related to the parameters in the preceding figure. When you set the Model parameterization parameter to By stall torque \& no-load speed or By rated power, rated speed \& no-load speed, the block solves for the equivalent circuit parameters as follows:

1 For the steady-state torque-speed relationship, L has no effect.
2 Sum the voltages around the loop and rearrange for i :

$$
i=\frac{V-v_{b}}{R}=\frac{V-k_{v} \omega}{R}
$$

3 Substitute this value of i into the equation for torque:

$$
T=\frac{k_{t}}{R}\left(V-k_{v} \omega\right)
$$

When you set the Model parameterization parameter to By stall torque \& no-load speed, the block uses the preceding equation to determine values for R and k_{t} (and equivalently k_{v}).

When you set the Model parameterization parameter to By rated power, rated speed \& no-load speed, the block uses the rated speed and power to calculate the rated torque. The block uses the rated torque and no-load speed values in the preceding equation to determine values for R and k_{t}.

The block models motor inertia J and damping B for all values of the Model parameterization parameter. The output torque is:

$$
T_{\text {load }}=\frac{k_{t}}{R}\left(V-k_{v} \omega\right)-J \dot{\omega}-B \omega
$$

When a positive current flows from the electrical + to - ports, a positive torque acts from the mechanical C to R ports.

Dialog
 Box and Parameters

Electrical Torque Tab

Model parameterization

Select one of the following methods for block parameterization:

- By equivalent circuit parameters - Provide electrical parameters for an equivalent circuit model of the motor. This is the default method.
- By stall torque \& no-load speed - Provide torque and speed parameters that the block converts to an equivalent circuit model of the motor.
- By rated power, rated speed \& no-load speed - Provide power and speed parameters that the block converts to an equivalent circuit model of the motor.

Armature resistance

Resistance of the conducting portion of the motor. This parameter is only visible when you select By equivalent circuit parameters for the Model parameterization parameter. The default value is 3.9Ω.

Armature inductance

Inductance of the conducting portion of the motor. If you do not have information about this inductance, set the value of this parameter to a small, nonzero number. The default value is $1.2 \mathrm{e}-05 \mathrm{H}$.

Define back-emf or torque constant

Indicate whether you will specify the motor's back-emf constant or torque constant. When you specify them in SI units, these constants have the same value, so you only specify one or the other in the block dialog box. This parameter is only visible when you select By equivalent circuit parameters for the Model parameterization parameter. The default value is Specify back-emf constant.

Back-emf constant

The ratio of the voltage generated by the motor to the speed at which the motor is spinning. The default value is $7.2 \mathrm{e}-05 \mathrm{~V} / \mathrm{rpm}$. This parameter is only visible when you select Specify back-emf constant for the Define back-emf or torque constant parameter.

Torque constant

The ratio of the torque generated by the motor to the current delivered to it. This parameter is only visible when you select Specify torque constant for the Define back-emf or torque constant parameter. The default value is $6.876 \mathrm{e}-04 \mathrm{~N} * \mathrm{~m} / \mathrm{A}$.

Stall torque

The amount of torque generated by the motor when the speed is approximately zero. This parameter is only visible when you select By stall torque \& no-load speed for the Model parameterization parameter. The default value is $2.4 \mathrm{e}-04$ N*m.

No-load speed

Speed of the motor when not driving a load. This parameter is only visible when you select By stall torque \& no-load speed or By rated power, rated speed \& no-load speed for the Model parameterization parameter. The default value is $1.91 \mathrm{e}+04 \mathrm{rpm}$.

Rated speed (at rated load)

Motor speed at the rated mechanical power level. This parameter is only visible when you select By rated power, rated speed \& no-load speed for the Model parameterization parameter. The default value is $1.5 \mathrm{e}+04 \mathrm{rpm}$.

Rated load (mechanical power)

The mechanical power the motor is designed to deliver at the rated speed. This parameter is only visible when you select By rated power, rated speed \& no-load speed for the Model parameterization parameter. The default value is 0.08 W .

Rated DC supply voltage

The voltage at which the motor is rated to operate. This parameter is only visible when you select By stall torque \& no-load speed or By rated power, rated speed \& no-load speed for the Model parameterization parameter. The default value is 1.5 V .

Mechanical Tab

Rotor inertia

Resistance of the rotor to change in motor motion. The default value is $0.01 \mathrm{~g}{ }^{*} \mathrm{~cm}^{2}$. The value can be zero.

Rotor damping

Energy dissipated by the rotor. The default value is $1 \mathrm{e}-08$ $\mathrm{N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})$. The value can be zero.

Initial rotor speed

Speed of the rotor at the start of the simulation. The default value is 0 rpm .

```
Ports The block has the following ports:
+
    Positive electrical input.
    Negative electrical input.
C
    Mechanical rotational conserving port.
R
    Mechanical rotational conserving port.
```


Examples

See the following demos:

- Linear Electrical Actuator (Motor Model)
- Linear Electrical Actuator (System-Level Model)
- Linear Electrical Actuator (Implementation Model)

References [1] Bolton, W. Mechatronics: Electronic Control Systems in Mechanical and Electrical Engineering, 3rd edition Pearson Education, 2004.

See Also Induction Motor, Servomotor, Shunt Motor, and Universal Motor.

DC Voltage Source

Purpose Model constant voltage source

Library
Description

Dialog
Box and Parameters

Ports

The block has the following ports:
$+\quad$ Positive electrical voltage.
$-\quad$ Negative electrical voltage.

See Also
DC Current Source

Purpose

Model piecewise linear, piecewise linear zener, or exponential diode

Library

Semiconductor Devices
Description

The Diode block represents one of the following types of diodes:

- "Piecewise Linear" on page 2-89
- "Piecewise Linear Zener" on page 2-89
- "Exponential" on page 2-90

Piecewise Linear

The piecewise linear diode model is the same model found in the Simscape Diode block, with the addition of a fixed junction capacitance. If the diode forward voltage exceeds the value specified in the Forward voltage parameter, the diode behaves as a linear resistor with the resistance specified in the On resistance parameter. Otherwise, the diode behaves as a linear resistor with the small conductance specified in the Off conductance parameter. Zero voltage across the diode results in zero current flowing.

Piecewise Linear Zener

The piecewise linear zener diode model behaves like the piecewise linear diode model for bias voltages above $-V z$, where $V z$ is the Reverse breakdown voltage Vz parameter value. For voltages less than $-V z$, the diode behaves as a linear resistor with the low Zener resistance specified in the Zener resistance $\mathbf{R z}$ parameter. This diode model also includes a fixed junction capacitance.

Note The Reverse breakdown voltage $\mathbf{V z}$ parameter is defined as a positive number. The p-n voltage at breakdown is $-V z$, which is negative.

Diode

Exponential

The exponential diode model provides the following relationship between the diode current I and the diode voltage V :

$$
\begin{array}{ll}
I=I S \times\left(e^{\frac{q V}{N k T}}-1\right) & V>-V z \\
I=-I S \times\left(e^{\frac{-q(V+V z)}{k T}}-e^{\frac{q V}{N k T}}\right) & V \leq-V z
\end{array}
$$

where:

- q is the elementary charge on an electron (1.602176e-19 Coulombs).
- k is the Boltzmann constant (1.3806503e-23 J/K).
- $V z$ is the Reverse breakdown voltage BV parameter value.
- N is the emission coefficient.
- IS is the saturation current.
- T is the temperature at which the diode parameters are specified, as defined by the Measurement temperature parameter value.

When $\frac{q V}{N k T}>80$, the block replaces $e^{\frac{q V}{N k T}}$ with $\left(\frac{q V}{N k T}-79\right) e^{80}$, which
matches the gradient of the diode current at $q V /(N k T)=80$ and extrapolates linearly. When $\frac{q V}{N k T}<-79$, the block replaces $e^{\frac{q V}{N k T}}$ with $\left(\frac{q V}{N k T}+80\right) e^{-79}$, which also matches the gradient and extrapolates line afly. Typical electrical circuits do not reach these extreme values. The block provides this linear extrapolation to help convergence when solving for the constraints during simulation.

When you select Use parameters IS and N for the Parameterization parameter, you specify the diode in terms of the Saturation current IS and Emission coefficient \mathbf{N} parameters. When you select Use I -V curve data points for the Parameterization parameter, you specify two voltage and current measurement points on the diode I-V curve and the block derives the $I S$ and N values. When you specify current and voltage measurements, the block calculates $I S$ and N as follows:

- $\mathrm{N}=\left(\left(V_{1}-V_{2}\right) / V_{t}\right) /\left(\log \left(I_{1}\right)-\log \left(I_{2}\right)\right)$
- IS $=\left(I_{1} /\left(\exp \left(V_{1} /\left(\mathrm{N} V_{t}\right)\right)-1\right)+I_{2} /\left(\exp \left(V_{2} /\left(\mathrm{N} V_{t}\right)\right)-1\right)\right) / 2$ where:
- $V_{t}=k T / q$.
- V_{1} and V_{2} are the values in the Voltages [V1 V2] vector.
- I_{1} and I_{2} are the values in the Currents [I1 I2] vector.

The exponential diode model provides the option to include a junction capacitance:

- When you select Include fixed or zero junction capacitance for the Junction capacitance parameter, the capacitance is fixed.
- When you select Use parameters CJO, VJ, M \& FC for the Junction capacitance parameter, the block uses the coefficients $C J O, V J, M$, and $F C$ to calculate a junction capacitance that depends on the junction voltage.
- When you select Use C-V curve data points for the Junction capacitance parameter, the block uses three capacitance values on the C-V capacitance curve to estimate $C J O, V J$, and M and uses these values with the specified value of $F C$ to calculate a junction capacitance that depends on the junction voltage. The block calculates $C J O, V J$, and M as follows:

Diode

- CJ0 $=C_{1}\left(\left(V_{R 2}-V_{R 1}\right) /\left(V_{R 2}-V_{R 1}\left(C_{2} / C_{1}\right)^{-1 / M}\right)\right)^{M}$
- $V J=-\left(-V_{R 2}\left(C_{1} / C_{2}\right)^{-1 / M}+V_{R 1}\right) /\left(1-\left(C_{1} / C_{2}\right)^{-1 / M}\right)$
- $M=\log \left(C_{3} / C_{2}\right) / \log \left(V_{R 2} / V_{R 3}\right)$
where:
- $V_{R 1}, V_{R 2}$, and $V_{R 3}$ are the values in the Reverse bias voltages [VR1 VR2 VR3] vector.
- C_{1}, C_{2}, and C_{3} are the values in the Corresponding capacitances [C1 C2 C3] vector.
It is not possible to estimate $F C$ reliably from tabulated data, so you must specify its value using the Capacitance coefficient FC parameter. In the absence of suitable data for this parameter, use a typical value of 0.5 .

The reverse bias voltages (defined as positive values) should satisfy $V_{R 3}>V_{R 2}>V_{R 1}$. This means that the capacitances should satisfy $C_{1}>C_{2}>C_{3}$ as reverse bias widens the depletion region and hence reduces capacitance. Violating these inequalities results in an error. Voltages $V_{R 2}$ and $V_{R 3}$ should be well away from the Junction potential $V J$. Voltage $V_{R 1}$ should be less than the Junction potential $V J$, with a typical value for $V_{R 1}$ being 0.1 V .

The voltage-dependent junction is defined in terms of the capacitor charge storage Q_{j} as:

- For $V<F C \times V J$:

$$
Q_{j}=C J 0 \times(V J /(M-1)) \times\left((1-V / V J)^{1-M}-1\right)
$$

- For $V \geq F C \times V J$:

$$
\begin{aligned}
Q_{j}= & C J 0 \times F_{1}+\left(C J 0 / F_{2}\right) \times\left(F_{3} \times(V-F C \times V J)\right. \\
& \left.+0.5^{*}(M / V J) *\left(V^{2}-(F C \times V J)^{2}\right)\right)
\end{aligned}
$$

where:

- $\left.F_{1}=(V J /(1-M)) \times\left(1-(1-F C)^{1-M}\right)\right)$
- $\left.\left.F_{2}=(1-F C)^{1+M}\right)\right)$
- $F_{3}=1-F C \times(1+M)$

These equations are the same as used in [2], except that the temperature dependence of $V J$ and $F C$ is not modeled. This model does not include the diffusion capacitance term that affects performance for high frequency switching applications.

Basic
 Assumptions and Limitations

The Exponential diode model has the following limitations:

- When you select Use I-V curve data points for the Parameterization parameter, choose a pair of voltages near the diode turn-on voltage. Typically, this is in the range from 0.05 to 1 Volt. Using values outside of this region may lead to numerical issues and poor estimates for $I S$ and N.
- This block does not model temperature-dependent effects. SimElectronics ${ }^{\circledR}$ simulates the block at the temperature at which the component behavior was measured, as specified by the Measurement temperature parameter value.
- You may need to use nonzero ohmic resistance and junction capacitance values to prevent numerical simulation issues, but the simulation may run faster with these values set to zero.

Dialog Box and Parameters

Main Tab

Block Parameters: Diod						
Diode This block represents a diode. Use the Diode model parameter to select one of the following model types: [1] Piecewise Linear Diode. This option invokes the diode model from the Simscape Foundation Library. [2] Piecewise Linear Zener Diode (i.e. piecewise linear diode with reverse breakdown characteristics). This model is identical to the Piecewise Linear Diode for reverse voltages above the Reverse Breakdown Yoltage Vz . For voltages below Vz the diode breaks down with a low corresponding Zener Resistance Rz. [3] Exponential Diode. Uses the standard exponential diode equation $\mathrm{I}=$ Is* $\left(\exp \left(V /\left(N^{*} V \mathrm{~V}\right)\right)-1\right)$ where is is the Saturation current, vt is the thermal voltage, and N is the emission coefficient ($>=1$). Vt is given by Vt $=\mathrm{k}^{*} \mathrm{~T} / \mathrm{e}$ where k is Boltzmann's constant, T is the absolute Temperature of the $\mathrm{p}-\mathrm{n}$ junction, and e is the magnitude of charge on an electron.						
-Parameters-Main $/$ Reverse Breakdown $/$ Ohmic Resistance \| Junction Capacitance						
	or	Cancel	Help	Apply		

Diode model

Select one of the following diode models:

- Piecewise Linear (Foundation Library) - Use a piecewise linear model for the diode, as described in "Piecewise Linear" on page 2-89. This is the default method.
- Piecewise Linear Zener - Use a piecewise linear model with reverse breakdown characteristics for the diode, as described in "Piecewise Linear Zener" on page 2-89.
- Exponential - Use a standard exponential model for the diode, as described in "Exponential" on page 2-90.

Forward voltage

Minimum voltage that needs to be applied for the diode to become forward-biased. This parameter is only visible when you select Piecewise Linear (Foundation Library) or Piecewise Linear Zener for the Diode model parameter. The default value is 0.6 V .

On resistance

The resistance of the diode when it is forward biased. This parameter is only visible when you select Piecewise Linear (Foundation Library) or Piecewise Linear Zener for the Diode model parameter. The default value is 0.3Ω.

Off conductance

The conductance of the diode when it is reverse biased. This parameter is only visible when you select Piecewise Linear (Foundation Library) or Piecewise Linear Zener for the Diode model parameter. The default value is $1 \mathrm{e}-081 / \Omega$.

Parameterization

Select one of the following methods for model parameterization:

- Use I-V curve data points - Specify measured data at two points on the diode I-V curve. This is the default method.
- Use parameters IS and N - Specify saturation current and emission coefficient.

Currents [I1 I2]

A vector of the current values at the two points on the diode I-V curve that the block uses to calculate $I S$ and N. This parameter is only visible when you select Exponential for the Diode model parameter and Use I-V curve data points for the

Diode

Parameterization parameter. The default value is [0.071 .5] A.

Voltages [V1 V2]

A vector of the voltage values at the two points on the diode I-V curve that the block uses to calculate $I S$ and N. This parameter is only visible when you select Exponential for the Diode model parameter and Use I-V curve data points for the Parameterization parameter. The default value is [0.70 .8] V.

Saturation current IS

The magnitude of the current that the ideal diode equation approaches asymptotically for very large reverse bias levels. This parameter is only visible when you select Exponential for the Diode model parameter and Use parameters IS and N for the Parameterization parameter. The default value is $1 \mathrm{e}-14 \mathrm{~A}$.

Measurement temperature

The temperature at which IS or the I-V curve was measured. This parameter is only visible when you select Exponential for the Diode model parameter. The default value is $25^{\circ} \mathrm{C}$.

Emission coefficient N

The diode emission coefficient or ideality factor. This parameter is only visible when you select Exponential for the Diode model parameter and Use parameters IS and N for the Parameterization parameter. The default value is 1 .

Reverse Breakdown Tab

Zener resistance Rz

The resistance of the diode when the voltage is less than the Reverse breakdown voltage Vz value. This parameter is only visible when you select Piecewise Linear Zener for the Diode model parameter. The default value is 0.3Ω.

Reverse breakdown voltage Vz

The reverse voltage below which the diode resistance changes to the Zener resistance $\mathbf{R z}$ value. This parameter is only visible when you select Piecewise Linear Zener for the Diode model parameter. The default value is 50 V .

Reverse breakdown voltage BV

The reverse voltage below which to model the rapid increase in conductance that occurs at diode breakdown. This parameter is only visible when you select Exponential for the Diode model parameter. The default value is Inf V, which effectively omits reverse breakdown from the model.

Ohmic Resistance Tab

Ohmic resistance RS

The series diode connection resistance. This parameter is only visible when you select Exponential for the Diode model parameter. The default value is 0.01Ω.

Junction Capacitance Tab

Diode

Junction capacitance

- When you select Piecewise Linear (Foundation Library) or Piecewise Linear Zener for the Diode model parameter, the Junction capacitance parameter is the fixed junction capacitance value. The default value is 5 pF .
- When you select Exponential for the Diode model parameter, the Junction capacitance parameter lets you select one of the following options for modeling the junction capacitance:
- Include fixed or zero junction capacitance - Model the junction capacitance as a fixed value.
- Use C-V curve data points - Specify measured data at three points on the diode C-V curve.
- Use parameters CJO, VJ, M \& FC - Specify zero-bias junction capacitance, junction potential, grading coefficient, and forward-bias depletion capacitance coefficient.

Zero-bias junction capacitance CJ0

The value of the capacitance placed in parallel with the exponential diode term. This parameter is only visible when you select Exponential for the Diode model parameter and Include fixed or zero junction capacitance or Use parameters CJO, VJ, M \& FC for the Junction capacitance parameter. The default value is 5 pF .

Reverse bias voltages [VR1 VR2 VR3]

A vector of the reverse bias voltage values at the three points on the diode C-V curve that the block uses to calculate CJO, VJ, and M. This parameter is only visible when you select Use C-V curve data points for the Junction capacitance parameter. The default value is [$\left.\begin{array}{lll}0.1 & 10 & 100\end{array}\right]$ V.

Corresponding capacitances [C1 C2 C3]

A vector of the capacitance values at the three points on the diode C-V curve that the block uses to calculate CJO, VJ, and M. This parameter is only visible when you select Use C-V curve data
points for the Junction capacitance parameter. The default value is [$\left.\begin{array}{lll}3.5 & 1 & 0.4\end{array}\right] \mathrm{pF}$.

Junction potential VJ

The junction potential. This parameter is only visible when you select Exponential for the Diode model parameter and Use parameters CJO, VJ, M \& FC for the Junction capacitance parameter. The default value is 1 V .

Grading coefficient M

The grading coefficient. This parameter is only visible when you select Exponential for the Diode model parameter and Use parameters CJO, VJ, M \& FC for the Junction capacitance parameter. The default value is 0.5 .

Capacitance coefficient FC

Fitting coefficient that quantifies the decrease of the depletion capacitance with applied voltage. This parameter is only visible when you select Exponential for the Diode model parameter and Use C-V curve data points or Use parameters CJO, VJ, M \& FC for the Junction capacitance parameter. The default value is 0.5 .

Ports
 The block has the following ports:

$+$
Electrical conserving port associated with the diode positive terminal.

Electrical conserving port associated with the diode negative terminal.

References

[1] MH. Ahmed and P.J. Spreadbury. Analogue and digital electronics for engineers. 2nd Edition, Cambridge University Press, 1984.
[2] G. Massobrio and P. Antognetti. Semiconductor Device Modeling with SPICE. 2nd Edition, McGraw-Hill, 1993.

Diode

See Also Simscape Diode, SPICE Diode

Purpose

Model exponential pulse current source

Library

Description

SPICE-Compatible Components/Sources function of time:

The Exponential Current Source block represents a current source whose output current value is an exponential pulse as a function of time and is independent of the voltage across the terminals of the source. The following equations describe the current through the source as a

$$
\begin{aligned}
& \left.I_{\text {out }}(0 \leq \text { Time } \leq T D R)\right)=I 1 \\
& I_{\text {out }}(T D R<\text { Time } \leq T D F)=I 1+(I 2-I 1) *\left(1-e^{-(T i m e-T D R) / T R}\right) \\
& I_{\text {out }}(T D F<\text { Time })=I 1+(I 2-I 1) *\left(e^{-(\text {Time-TDF }) T F}-e^{-(\text {Time-TDR }) T R}\right)
\end{aligned}
$$

where:

- I1 is the Initial value, I1 parameter value.
- I2 is the Pulse value, I2 parameter value.
- $T D R$ is the Rise delay time, TDR parameter value.
- $T R$ is the Rise time, TR parameter value.
- TDF is the Fall delay time, TDF parameter value.
- $T F$ is the Fall time, TF parameter value.

The block uses a small conductance internally to prevent numerical simulation issues. The conductance connects the + and - ports of the device and has a conductance GMIN:

- By default, GMIN matches the Minimum conductance GMIN parameter of the SPICE Environment Parameters block, whose default value is $1 \mathrm{e}-12$.

Exponential Current Source

- To change GMIN, add a SPICE Environment Parameters block to your model and set the Minimum conductance GMIN parameter to the desired value.

Dialog Box and Parameters

Initial value, I1

The value of the output current at time zero. The default value is 0 A .

Exponential Current Source

Pulse value, I2
The asymptotic value of the output current when the output is high. The default value is 0 A .

Rise delay time, TDR

The rise time delay. The default value is 0 s .

Rise time, TR

The time it takes the output current to rise from the Initial Value, I1 value to the Pulse Value, I2 value. The default value is $1 \mathrm{e}-09 \mathrm{~s}$. The value must be greater than 0.

Fall delay time, TDR

The fall time delay. The default value is 0 s , which differs from the SPICE default value.

Fall time, TF

The time it takes the output current to fall from the Pulse value, $\mathbf{I} 2$ value to the Initial value, $\mathbf{I} 1$ value. The default value is $1 \mathrm{e}-09$ s . The value must be greater than 0 .

Ports The block has the following ports:

[^1]See Also
Exponential Voltage Source

Exponential Voltage Source

Purpose Model exponential pulse voltage source

Library

SPICE-Compatible Components/Sources

Description The Exponential Voltage Source block represents a voltage source

 whose output voltage value is an exponential pulse as a function of time and is independent of the current through the source. The following equations describe the output current as a function of time:$$
\begin{aligned}
& \left.V_{\text {out }}(0 \leq \text { Time } \leq T D R)\right)=V 1 \\
& V_{\text {out }}(T D R<\text { Time } \leq T D F)=V 1+(V 2-V 1) *\left(1-e^{-(T i m e-T D R) / T R}\right) \\
& V_{\text {out }}(T D F<\text { Time })=V 1+(V 2-V 1) *\left(e^{-(T i m e-T D F) / T F}-e^{-(T i m e-T D R) / T R}\right)
\end{aligned}
$$

where:

- V1 is the Initial value, V1 parameter value.
- $V 2$ is the Pulse value, V2 parameter value.
- $T D R$ is the Rise delay time, TDR parameter value.
- $T R$ is the Rise time, TR parameter value.
- $T D F$ is the Fall delay time, TDF parameter value.
- $T F$ is the Fall time, TF parameter value.

Exponential Voltage Source

Dialog Box and Parameters

Block Parameters: Exponential Yoltage Source X
Exponential Voltage Source
The Exponential Yoltage Source block maintains an exponential voltage across its terminals, independent of the current through its terminals. The following equations describe the voltage across the exponential source as a function of time:

Vout $(0<=$ Time $<=$ TDR $)=V 1$
$\operatorname{Vout}(T D R<T i m e<=T D F)=V 1+(V 2-V 1)^{*}(1-\exp (-(T i m e-T D R) / T R))$
Vout $(T D F<T i m e)=V 1+(V 2-V 1)^{*}(1-\exp (-(T i m e-T D R) / T R))+(V 1-V 2)^{*}(1-\exp (-($ TimeTDF) (TF))

TR is the rise time. TF is the fall time. TDR is the rise time delay. TDF is the fall time delay. The default values for TR, TF and TDF differ from SPICE. The default rise and fall times are one nanosecond ($1 \mathrm{e}-9$), and the values of TR and TF must be greater than zero. The default value for the fall delay time is zero. If TDF is less than TDR, the middle equation above is not used.

Initial value, V1

The value of the output voltage at time zero. The default value is 0 V .

Pulse value, V2

The asymptotic value of the output voltage when the output is high. The default value is 0 V .

Exponential Voltage Source

Rise delay time, TDR
The rise time delay. The default value is 0 s .
Rise time, TR
The time it takes the output voltage to rise from the Initial value, $\mathbf{I} 1$ value to the Pulse value, $\mathbf{I} 2$ value. The default value is $1 \mathrm{e}-09 \mathrm{~s}$. The value must be greater than 0 .

Fall delay time, TDR
The fall time delay. The default value is 0 s .
Fall Time, TF
The time it takes the output voltage to fall from the Pulse value, $\mathbf{I} 2$ value to the Initial value, I1 value. The default value is 1e-09 s. The value must be greater than 0 .

Ports The block has the following ports:
$+$
Positive electrical voltage.

Negative electrical voltage.
See Also Exponential Current Source

FEM-Parameterized Linear Actuator

Purpose

Model linear actuator defined in terms of magnetic flux

Library

Description

Translational Actuators
The FEM-Parameterized Linear Actuator block implements a model of a linear actuator defined in terms of magnetic flux. Use this block to model custom solenoids and linear motors where magnetic flux depends on both distance and current. You parameterize the block using data from a third party Finite Element Magnetic (FEM) package.

The block has two options for the electrical equation. The first, Define
in terms of $d P h i(i, x) / d x$ and $d P h i(i, x) / d i$, defines the current in terms of partial derivatives of the magnetic flux (Φ) with respect to distance (x) and current (i), the equations for which are:

$$
\frac{d i}{d t}=\left(v-i R-\frac{\partial \Phi}{\partial x} \frac{d x}{d t}\right) / \frac{\partial \Phi}{\partial i}
$$

The second option, Define in terms of Phi(i,x), defines the voltage across the component directly in terms of the flux, the equation for which is:

$$
v=i R+\frac{d}{d t} \Phi(x, i)
$$

Numerically, defining the electrical equation in terms of flux partial derivatives is better because the back-emf is piecewise continuous. If using the flux directly, using a finer grid size for current and position will improve results, as will selecting cubic or spline interpolation.
In both cases, you specify the force as a function of current and position. If the finite element package does not provide force, then you can calculate it from the flux using the following equation:

$$
F=\int_{0}^{i} \frac{\partial \Phi(x, i)}{\partial x} d i
$$

FEM-Parameterized Linear Actuator

See the Finite Element Parameterized Solenoid demo for an example of this and other parameterization options.

You can define Φ and its partial derivatives for just positive, or positive and negative currents. If defining for just positive currents, then the block assumes that $\Phi(-i, x)=-\Phi(i, x)$. Therefore, if the current vector is positive only:

- The first current value must be zero.
- The flux corresponding to zero current must be zero.
- The partial derivative of flux with respect to displacement must be zero for zero current.

To model a linear motor with a repeated flux pattern, set the Flux dependence on displacement parameter to Cyclic. When selecting this option, the force and flux (or force and flux partial derivatives depending on the option chosen) must have identical first and last columns.

Basic Assumptions and Limitations

This block has the following limitations:

- It is imperative that you supply a consistent set of force and flux data. There is no checking that the force matrix is consistent with the flux data.
- When driving the FEM-Parameterized Linear Actuator block via a series inductor, you may need to include a parallel conductance in the inductor component.

FEM-Parameterized Linear Actuator

Dialog Box and Parameters

Magnetic Force Tab

Electrical model

Select one of the following parameterization options, based on the underlying electrical model:

- Define in terms of dPhi(i,x)/dx and dPhi(i,x)/di - Define the current through the block in terms of partial derivatives of the magnetic flux with respect to distance and current. This is the default method.
- Define in terms of Phi(i,x) - Define the voltage across the block terminals directly in terms of the flux.

FEM-Parameterized Linear Actuator

Current vector, i

Specify a vector of monotonically increasing current values corresponding to your force-flux data. If you specify positive currents only, the first element must be zero. The default value is

Displacement vector, x
Specify a vector of monotonically increasing displacement values corresponding to your force-flux data. The default value is [0 $0.050 .10 .150 .2 \mathrm{]} \mathrm{~m} / \mathrm{m}$.

Flux partial derivative wrt current, Phi(i,x)/di
Specify a matrix of the flux partial derivatives with respect to current. This parameter is used if Electrical model is set to Define in terms of dPhi(i,x)/dx and dPhi(i,x)/di. The default value, in Wb / A, is:

```
[ 0.104 0.098 0.091 0.085 0.078;
0.095 0.089 0.084 0.079 0.073;
0.085 0.081 0.077 0.073 0.069;
0.076 0.073 0.07 0.067 0.064;
0.067 0.065 0.063 0.061 0.06;
0.057 0.057 0.056 0.056 0.055;
0.048 0.049 0.049 0.05 0.05;
0.038 0.04 0.042 0.044 0.046;
0.029 0.032 0.035 0.038 0.041;
0.02 0.024 0.028 0.033 0.037;
0.01 0.016 0.021 0.027 0.032 ]
```

Flux partial derivative wrt displacement, $\operatorname{Phi}(\mathbf{i}, \mathrm{x}) / \mathbf{d x}$
Specify a matrix of the flux partial derivatives with respect to displacement. This parameter is used if Electrical model is set to Define in terms of $\mathrm{dPhi}(\mathrm{i}, \mathrm{x}) / \mathrm{dx}$ and $\mathrm{dPhi}(\mathrm{i}, \mathrm{x}) / \mathrm{di}$. The default value, in Wb / m, is:

```
[ 0 0 0 0 0;
-11.94 -10.57 -9.19 -7.81 -6.43;
-21.17 -19.92 -18.67 -17.42 -16.16;
-27.99 -26.87 -25.75 -24.62 -23.5;
```


FEM-Parameterized Linear Actuator

```
-32.42 -31.43 -30.43 -29.43 -28.44;
-34.46 -33.59 -32.72 -31.85 -30.98;
-34.09 -33.35 -32.61 -31.87 -31.12;
-31.33 -30.72 -30.1 -29.49 -28.87;
-26.17 -25.68 -25.2 -24.71 -24.22;
-18.62 -18.26 -17.9 -17.54 -17.18;
-8.66 -8.43 -8.2 -7.97 -7.73 ]
```


Flux linkage matrix, Phi(i,x)

Specify a matrix of the total flux linkage, that is, flux times the number of turns. This parameter is used if Electrical model is set to Define in terms of $\operatorname{Phi}(i, x)$. The default value, in Wb , is:
$\left.\begin{array}{llllll}{\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 0 ;\end{array}\right.} & & & \\ 0.0085 & 0.0079 & 0.0075 & 0.0071 & 0.0067 ; \\ 0.0171 & 0.016 & 0.0151 & 0.0143 & 0.0137 ; \\ 0.0254 & 0.0239 & 0.0226 & 0.0215 & 0.0206 ; \\ 0.033 & 0.0312 & 0.0297 & 0.0283 & 0.0271 ; \\ 0.0396 & 0.0377 & 0.036 & 0.0345 & 0.0331 ; \\ 0.0452 & 0.0433 & 0.0415 & 0.0399 & 0.0384 ; \\ 0.0495 & 0.0478 & 0.0461 & 0.0446 & 0.0431 ; \\ 0.0526 & 0.0512 & 0.0498 & 0.0485 & 0.0472 ; \\ 0.0545 & 0.0537 & 0.0528 & 0.0519 & 0.0508 ; \\ 0.0554 & 0.0553 & 0.0551 & 0.0548 & 0.0542\end{array}\right]$

Force matrix, $\mathbf{F}(\mathbf{i}, \mathbf{x})$

Specify a matrix of the electromagnetic force applied to the plunger or moving part. The default value, in N , is:

```
[ 0 0 0 0 0;
-0.6 -0.5 -0.4 -0.3 -0.3;
-2.3 -2 -1.7 -1.4 -1.2;
-4.9 -4.3 -3.7 -3.2 -2.7;
-8.3 -7.3 -6.4 -5.5 -4.7;
-12.2 -10.7 -9.4 -8.2 -7.2;
-16.2 -14.4 -12.7 -11.3 -10;
-20 -17.9 -15.9 -14.3 -12.9;
```


FEM-Parameterized Linear Actuator

$$
\begin{array}{lllll}
-23.3 & -20.9 & -18.8 & -17.1 & -15.7 \\
-25.7 & -23.1 & -21.1 & -19.4 & -18.2 ; \\
-26.5 & -24.1 & -22.2 & -20.9 & -20.1
\end{array}
$$

Flux dependence on displacement

Specify the flux pattern:

- Unique - No flux pattern present. This is the default option.
- Cyclic - Select this option to model a linear motor with a repeated flux pattern. The force and flux (or force and flux partial derivatives, depending on the Electrical model option chosen) must have identical first and last columns.

Interpolation method

Select one of the following interpolation methods for approximating the output value when the input value is between two consecutive grid points:

- Linear - Uses a bilinear interpolation algorithm, which is an extension of linear interpolation for functions in two variables.
- Cubic - Uses the bicubic interpolation algorithm.
- Spline - Uses the bicubic spline interpolation algorithm.

For more information on interpolation algorithms, see the PS Lookup Table (2D) block reference page.

Extrapolation method

Select one of the following extrapolation methods for determining the output value when the input value is outside the range specified in the argument list:

- From last 2 points - Extrapolates using the linear method (regardless of the interpolation method specified), based on the last two output values at the appropriate end of the range. That is, the block uses the first and second specified output values if the input value is below the specified range, and the two last specified output values if the input value is above the specified range.

FEM-Parameterized Linear Actuator

- From last point - Uses the last specified output value at the appropriate end of the range. That is, the block uses the last specified output value for all input values greater than the last specified input argument, and the first specified output value for all input values less than the first specified input argument.

For more information on extrapolation algorithms, see the PS Lookup Table (2D) block reference page.

This parameter is not available if you set the Flux dependence on displacement parameter to Cyclic.

Winding resistance

Total resistance of the electrical winding. The default value is 14 Ohm .

FEM-Parameterized Linear Actuator

Mechanical Tab

Damping

Linear damping. The default value is $1 \mathrm{~N} /(\mathrm{m} / \mathrm{s})$. The value can be zero.

Plunger mass

Mass of the moving part, which corresponds to mechanical translational port R. The default value is 0.05 kg . The value can be zero.

Minimum stroke

The stroke at which the lower mechanical end stop is applied. The default value is 0 . The value can be - Inf.

FEM-Parameterized Linear Actuator

Maximum stroke

The stroke at which the upper mechanical end stop is applied. The default value is 0.2 mm . The value can be Inf.

Initial plunger position

Position of the plunger at the start of the simulation. The default value is 0 mm .

Initial plunger velocity

Speed of the plunger at the start of the simulation. The default value is $0 \mathrm{~mm} / \mathrm{s}$.

Contact stiffness

Contact stiffness between plunger and end stops. The default value is $1 \mathrm{e} 8 \mathrm{~N} / \mathrm{m}$.

Contact damping

Contact damping between plunger and end stops. The default value is $1 \mathrm{e} 4 \mathrm{~N} /(\mathrm{m} / \mathrm{s})$.

Ports This block has the following ports:
$+$
Positive electrical conserving port.

Negative electrical conserving port.
C
Mechanical translational conserving port connected to the actuator case.

R
Mechanical translational conserving port connected to the plunger.

Examples The Finite Element Parameterized Solenoid demo illustrates the use and parameterization options of the this block.

See Also FEM-Parameterized Rotary Actuator and Solenoid.

FEM-Parameterized Rotary Actuator

Purpose
 Library
 Description

Model rotary actuator defined in terms of magnetic flux

Rotational Actuators

The FEM-Parameterized Rotary Actuator block implements a model of a rotary actuator defined in terms of magnetic flux. Use this block to model custom rotary actuators and motors where magnetic flux depends on both rotor angle and current. You parameterize the block using data from a third party Finite Element Magnetic (FEM) package.

The block has two options for the electrical equation. The first, Define in terms of dPhi(i,theta)/dtheta and dPhi(i,theta)/di, defines the current in terms of partial derivatives of the magnetic flux (Φ) with respect to rotor angle (θ) and current (i), the equations for which are:

$$
\frac{d i}{d t}=\left(v-i R-\frac{\partial \Phi}{\partial \theta} \frac{d \theta}{d t}\right) / \frac{\partial \Phi}{\partial i}
$$

The second option, Define in terms of Phi(i,theta), defines the voltage across the component directly in terms of the flux, the equation for which is:

$$
v=i R+\frac{d}{d t} \Phi(\theta, i)
$$

Numerically, defining the electrical equation in terms of flux partial derivatives is better because the back-emf is piecewise continuous. If using the flux directly, using a finer grid size for current and position will improve results, as will selecting cubic or spline interpolation.
In both cases, you specify the torque as a function of current and rotor angle. If the finite element package does not provide torque, then you can calculate it from the flux using the following equation:

$$
T=\int_{0}^{i} \frac{\partial \Phi(\theta, i)}{\partial \theta} d i
$$

FEM-Parameterized Rotary Actuator

See the Finite Element Parameterized Solenoid demo and its initialization file elec_fem_solenoid_ini.m for an example of how to implement this type of integration in MATLAB ${ }^{\circledR}$.

You can define Φ and its partial derivatives for just positive, or positive and negative currents. If defining for just positive currents, then the block assumes that $\Phi(-i, x)=-\Phi(i, x)$. Therefore, if the current vector is positive only:

- The first current value must be zero.
- The flux corresponding to zero current must be zero.
- The partial derivative of flux with respect to rotor angle must be zero for zero current.

To model a rotary motor with a repeated flux pattern, set the Flux dependence on displacement parameter to Cyclic. When selecting this option, the torque and flux (or torque and flux partial derivatives depending on the option chosen) must have identical first and last columns.

Basic
 Assumptions and Limitations

This block has the following limitations:

- It is imperative that you supply a consistent set of torque and flux data. There is no checking that the torque matrix is consistent with the flux data.
- When driving the FEM-Parameterized Rotary Actuator block via a series inductor, you may need to include a parallel conductance in the inductor component.

FEM-Parameterized Rotary Actuator

Dialog Box and Parameters

Magnetic Force Tab

Block Parameters: FEM-Parameterized Rotary Actuator			
FEM-Parameterized Rotary Actuator			
This block implements the electrical and mechanical characteristics of a rotary motor or actuator for which magnetic flux linkage depends nonlinearly on current and rotor angle. The angle range may optionally be limited by mechanical hard stops.			
Parameters			
Magnetic Force \| Mechanical			
Electrical model	Define in terms of dPhili(i,theta)/dtheta and dPhi(i, theta)/di		\checkmark
Current vector, i:	[00.20.40.60.81]	A	\checkmark
Angle vector, theta:	05060708090100110120130140150160170180]	deg	\checkmark
Flux partial derivative wrt to current, dPhi(i, theta)/di:	$11350.01180 .00960 .00740 .00520 .00350 .00240 .002]$	Wb/A	\checkmark
Flux partial derivative wrt to angle, dPhi(i, theta)/dtheta:	$884-0.0113-0.0128-0.0128-0.0113-0.0084-0.00440]$	Wbirad	\checkmark
Torque matrix, T (i, theta):	-81-5.6292-6.4013-6.4013-5.6292-4.1781-2.22310]	m $N^{*} \mathrm{~m}$	\square
Flux dependence on displacement:	Cyclic		\checkmark
Interpolation method:	Linear		\checkmark
Winding resistance:	10	Ohm	\square

Electrical model

Select one of the following parameterization options, based on the underlying electrical model:

- Define in terms of dPhi(i,theta)/dtheta and dPhi(i, theta)/di - Define the current through the block in terms of partial derivatives of the magnetic flux with respect to rotor angle and current. This is the default method.
- Define in terms of Phi(i,theta) - Define the voltage across the block terminals directly in terms of the flux.

Current vector, i

Specify a vector of monotonically increasing current values corresponding to your torque-flux data. If you specify positive
currents only, the first element must be zero. The default value is $\left[\begin{array}{lllllll}0 & 0.2 & 0.4 & 0.6 & 0.8 & 1\end{array}\right]$ A.

Angle vector, theta

Specify a vector of monotonically increasing rotor angle values corresponding to your torque-flux data. The default value is [0 102030405060708090100110120130140150160 170180] deg.

Flux partial derivative wrt current, Phi(i,theta)/di
Specify a matrix of the flux partial derivatives with respect to current. This parameter is used if Electrical model is set to Define in terms of dPhi(i,theta)/dtheta and $\mathrm{dPhi}(\mathrm{i}$, theta)/di. The default value, in Wb / A, is:

```
[ [ 0.002 0.0024 0.0035 0.0052 0.0074 0.0096 0.0118 0.0135 0.0146 ...
    0.015 0.0146 0.0135 0.0118 0.0096 0.0074 0.0052 0.0035 0.0024 0.002;
0.002 0.0024 0.0035 0.0052 0.0074 0.0096 0.0118 0.0135 0.0146 ...
    0.015 0.0146 0.0135 0.0118 0.0096 0.0074 0.0052 0.0035 0.0024 0.002;
0.002 0.0024 0.0035 0.0052 0.0074 0.0096 0.0118 0.0135 0.0146 ...
    0.015 0.0146 0.0135 0.0118 0.0096 0.0074 0.0052 0.0035 0.0024 0.002;
    0.002 0.0024 0.0035 0.0052 0.0074 0.0096 0.0118 0.0135 0.0146 \ldots
    0.015 0.0146 0.0135 0.0118 0.0096 0.0074 0.0052 0.0035 0.0024 0.002;
    0.002 0.0024 0.0035 0.0052 0.0074 0.0096 0.0118 0.0135 0.0146 \ldots.
    0.015 0.0146 0.0135 0.0118 0.0096 0.0074 0.0052 0.0035 0.0024 0.002;
0.002 0.0024 0.0035 0.0052 0.0074 0.0096 0.0118 0.0135 0.0146 ...
    0.015 0.0146 0.0135 0.0118 0.0096 0.0074 0.0052 0.0035 0.0024 0.002; ]
```

Flux partial derivative wrt angle, Phi(i,theta)/dtheta
Specify a matrix of the flux partial derivatives with respect to rotor angle. This parameter is used if Electrical model is set to Define in terms of dPhi(i,theta)/dtheta and dPhi(i,theta)/di. The default value, in Wb/rad, is:

```
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
    0 9e-4 0.0017 0.0023 0.0026 0.0026 0.0023 0.0017 9e-4 ...
        0-9e-4 -0.0017 -0.0023 -0.0026 -0.0026 -0.0023 -0.0017 -9e-4 0;
    0 0.0018 0.0033 0.0045 0.0051 0.0051 0.0045 0.0033 0.0018 ...
    0-0.0018 -0.0033 -0.0045 -0.0051 -0.0051 -0.0045 -0.0033-0.0018 0;
```


FEM-Parameterized Rotary Actuator

```
0 0.0027 0.005 0.0068 0.0077 0.0077 0.0068 0.005 0.0027 ...
    0 -0.0027 -0.005 -0.0068-0.0077 -0.0077 -0.0068-0.005 -0.0027 0;
0 0.0036 0.0067 0.009 0.0102 0.0102 0.009 0.0067 0.0036 ...
    0 -0.0036 -0.0067-0.009 -0.0102 -0.0102 -0.009 -0.0067 -0.0036 0;
0 0.0044 0.0084 0.0113 0.0128 0.0128 0.0113 0.0084 0.0044 ...
    0 -0.0044 -0.0084-0.0113 -0.0128 -0.0128 -0.0113 -0.0084 -0.0044 0 ]
```

Flux linkage matrix, Phi(i,theta)
Specify a matrix of the total flux linkage, that is, flux times the number of turns. This parameter is used if Electrical model is set to Define in terms of Phi(i,theta). The default value, in Wb , is:

```
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
    4e-4 4.8e-4 7e-4 0.00105 0.00147 0.00193 0.00235 0.0027 0.00292 ...
        0.003 0.00292 0.0027 0.00235 0.00193 0.00147 0.00105 7e-4 4.8e-4 4e-4;
8e-4 9.6e-4 0.00141 0.0021 0.00295 0.00385 0.0047 0.00539 0.00584 ...
    0.006 0.00584 0.00539 0.0047 0.00385 0.00295 0.0021 0.00141 9.6e-4 8e-4;
0.0012 0.00144 0.00211 0.00315 0.00442 0.00578 0.00705 0.00809 0.00876 ...
    0.009 0.00876 0.00809 0.00705 0.00578 0.00442 0.00315 0.00211 0.00144 0.0012;
0.0016 0.00191 0.00282 0.0042 0.0059 0.0077 0.0094 0.01078 0.01169 ...
    0.012 0.01169 0.01078 0.0094 0.0077 0.0059 0.0042 0.00282 0.00191 0.0016;
0.002 0.00239 0.00352 0.00525 0.00737 0.00963 0.01175 0.01348 0.01461 \ldots
    0.015 0.01461 0.01348 0.01175 0.00963 0.00737 0.00525 0.00352 0.00239 0.002 ]
```


Torque matrix, T(i,theta)

Specify a matrix of the electromagnetic torque applied to the rotor. The default value, in $\mathrm{mN} * \mathrm{~m}$, is:

```
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
    0 0.0889 0.1671 0.2252 0.2561 0.2561 0.2252 0.1671 0.0889 ...
            0-0.0889 -0.1671 -0.2252 -0.2561 -0.2561 -0.2252 -0.1671 -0.0889 0;
0 0.3557 0.6685 0.9007 1.0242 1.0242 0.9007 0.6685 0.3557 ...
            0-0.3557 -0.6685 -0.9007 -1.0242 -1.0242 -0.9007 -0.6685 -0.3557 0;
0 0.8003 1.5041 2.0265 2.3045 2.3045 2.0265 1.5041 0.8003 ...
            0 -0.8003 -1.5041 -2.0265 -2.3045 -2.3045 -2.0265 -1.5041 -0.8003 0;
0 1.4228 2.674 3.6027 4.0968 4.0968 3.6027 2.674 1.4228 ...
            0-1.4228 -2.674 -3.6027 -4.0968 -4.0968 -3.6027 -2.674 -1.4228 0;
```


FEM-Parameterized Rotary Actuator

```
0 2.2231 4.1781 5.6292 6.4013 6.4013 5.6292 4.1781 2.2231 ...
    0 -2.2231 -4.1781 -5.6292 -6.4013 -6.4013 -5.6292 -4.1781 -2.2231 0 ]
```


Flux dependence on displacement

Specify the flux pattern:

- Unique - No flux pattern present. This is the default option.
- Cyclic - Select this option to model a rotary motor with a repeated flux pattern. The torque and flux (or torque and flux partial derivatives, depending on the Electrical model option chosen) must have identical first and last columns.

Interpolation method

Select one of the following interpolation methods for approximating the output value when the input value is between two consecutive grid points:

- Linear - Uses a bilinear interpolation algorithm, which is an extension of linear interpolation for functions in two variables.
- Cubic - Uses the bicubic interpolation algorithm.
- Spline - Uses the bicubic spline interpolation algorithm.

For more information on interpolation algorithms, see the PS Lookup Table (2D) block reference page.

Extrapolation method

Select one of the following extrapolation methods for determining the output value when the input value is outside the range specified in the argument list:

- From last 2 points - Extrapolates using the linear method (regardless of the interpolation method specified), based on the last two output values at the appropriate end of the range. That is, the block uses the first and second specified output values if the input value is below the specified range, and the two last specified output values if the input value is above the specified range.

FEM-Parameterized Rotary Actuator

- From last point - Uses the last specified output value at the appropriate end of the range. That is, the block uses the last specified output value for all input values greater than the last specified input argument, and the first specified output value for all input values less than the first specified input argument.

For more information on extrapolation algorithms, see the PS Lookup Table (2D) block reference page.

This parameter is not available if you set the Flux dependence on displacement parameter to Cyclic.

Winding resistance

Total resistance of the electrical winding. The default value is 10 Ohm .

Mechanical Tab

FEM-Parameterized Rotary Actuator

Damping

Rotary damping. The default value is $1 \mathrm{e}-4 \mathrm{~N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})$. The value can be zero.

Rotor inertia

Inertia of the rotor attached to mechanical translational port R. The default value is $5 \mathrm{e}-5 \mathrm{~kg}^{*} \mathrm{~m}^{\wedge} 2$. The value can be zero.

Minimum rotor angle

The rotor angle at which the lower mechanical end stop is applied. The default value is - Inf.

Maximum rotor angle

The rotor angle at which the upper mechanical end stop is applied. The default value is Inf.

Initial rotor position

Position of the rotor at the start of the simulation. The default value is 0 deg.

Initial rotor velocity

Angular velocity of the rotor at the start of the simulation. The default value is $0 \mathrm{deg} / \mathrm{s}$.

Contact stiffness

Contact stiffness between rotor and end stops. The default value is $1 \mathrm{e} 8 \mathrm{~N} * \mathrm{~m} / \mathrm{rad}$.

Contact damping

Contact damping between rotor and end stops. The default value is $1 \mathrm{e} 4 \mathrm{~N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})$.

Ports This block has the following ports:

Positive electrical conserving port.

Negative electrical conserving port.

FEM-Parameterized Rotary Actuator

C
Mechanical rotational conserving port connected to the actuator case.

R
Mechanical rotational conserving port connected to the rotor.
FEM-Parameterized Linear Actuator and Solenoid.

Finite-Gain Op-Amp

Purpose

Model gain-limited operational amplifier

Library

Description
Integrated Circuits

The Finite-Gain Op-Amp block models a gain-limited operational amplifier. If the voltages at the positive and negative ports are $V p$ and $V m$, respectively, the output voltage is:

$$
V_{\text {out }}=A\left(V_{p}-V_{m}\right)-I_{\text {out }} * R_{\text {out }}
$$

where:

- A is the gain.
- $R_{\text {out }}$ is the output resistance.
- $I_{\text {out }}$ is the output current.

The input current is:

$$
\frac{V_{p}-V_{m}}{R_{i n}}
$$

where $R_{i n}$ is the input resistance.
The output voltage is limited by the minimum and maximum output values you specify in the block dialog box.

Finite-Gain Op-Amp

Dialog Box and Parameters

Gain, A
The open-loop gain of the operational amplifier. The default value is 1000 .

Input resistance, Rin

The resistance at the input of the operational amplifier that the block uses to calculate the input current. The default value is $1 \mathrm{e}+06 \Omega$.

Output resistance, Rout

The resistance at the output of the operational amplifier that the block uses to calculate the drop in output voltage due to output current. The default value is 100Ω.

Finite-Gain Op-Amp

Minimum output, Vmin

The lower limit on the operational amplifier output voltage. The default value is -15 V .

Maximum output, Vmax

The upper limit on the operational amplifier output voltage. The default value is 15 V .

Ports

The block has the following ports:

$+$
Positive electrical voltage.
Negative electrical voltage.
OUT
Output voltage.

See Also

Simscape Op-Amp, Band-Limited Op-Amp

Purpose
Library
Description
\square -

Dialog
Box and Parameters

Model fuse that protects against excessive current
Passive Devices
The Fuse block breaks the circuit in which it is connected. It does so when the current through the device exceeds the rated current at which the fuse is designed to blow and continues to exceed it for a specified amount of time.

Rated current

The current value at which the fuse blows when exceeded for a specified amount of time. The default value is 1 A .

Time to fuse

The time for which the current must exceed the rated current for the fuse to blow. The default value is 0 s .

Fuse resistance R

The fuse resistance. The parameter value must be greater than zero. The default value is 0.01Ω.

Open-circuit conductance G

The open-circuit fuse conductance when the fuse has blown. The parameter value must be greater than zero. The default value is $1 \mathrm{e}-081 / \Omega$.

Ports
The block has the following ports:

Positive electrical port.

Negative electrical port.

Purpose	Model simple battery
Library	Sources

Description The Generic Battery block represents a simple battery. If you select Infinite for the Battery charge capacity parameter, the block models the battery as a series resistor and a constant voltage source. If you select Finite for the Battery charge capacity parameter, the block models the battery as a series resistor and a charge-dependent voltage source whose voltage as a function of charge has the following reciprocal relationship:

$$
V=V_{0}\left[1-\left(\frac{\alpha(1-x)}{1-\beta(1-x)}\right)\right]
$$

where:

- x is the ratio of the ampere-hours left to the number of ampere-hours, $A H$, for which the battery is rated.
- V_{0} is the voltage when the battery is fully charged, as defined by the Nominal voltage, V_nominal parameter.
- The block calculates the constants α and β to satisfy the following battery conditions:
- The battery voltage is zero when the charge is zero, that is, when x $=0$.
- The battery voltage is V1 (the Voltage V1 < V_nominal when charge is AH1 parameter value) when the charge is the Charge AH1 when no-load volts are V1 parameter value, that is, when $x=A H 1 / A H$.

The equation defines a reciprocal relationship between voltage and remaining charge. It is an approximation to what happens in a real battery, but it does replicate the increasing rate of voltage drop at low charge values. It also ensures that the battery voltage becomes zero

Generic Battery

Dialog Box and Parameters

when the charge level is zero. This simple model has the advantage of requiring very few parameters, and these are parameters that are readily available on most datasheets.

Nominal voltage, V_nominal

The voltage at the output port when the battery is fully charged. The default value is 12 V .

Internal resistance, R1

Internal connection resistance. The default value is 2Ω.

Battery charge capacity

Select one of the following options for modeling the charge capacity of the battery:

- Infinite - The battery voltage is independent of charge drawn from the battery. This is the default option.
- Finite - The battery voltage decreases as charge decreases.

Ampere-Hour rating, AH

The maximum battery charge in ampere-hours. This parameter is only visible when you select Finite for the Battery charge capacity parameter. The default value is $50 \mathrm{hr*A}$.

Initial charge

The battery charge at the start of the simulation. This parameter is only visible when you select Finite for the Battery charge capacity parameter. The default value is $50 \mathrm{hr*A}$.

Voltage V1 < V_nominal when charge is AH1
The battery output voltage when the charge level is AH1 hr*A. This parameter is only visible when you select Finite for the Battery charge capacity parameter. The default value is 11.5 V.

Charge AH1 when no-load volts are V1

The battery charge level in hr^{*} A when the no-load output voltage is V1. This parameter is only visible when you select Finite for the Battery charge capacity parameter. The default value is 25 hr *A.

Self-discharge resistance, R2
Select one of the following options for modeling the self-discharge resistance of the battery:

- Omit - Do not include resistance across the battery output terminals in the model.
- Include - Include resistance R2 across the battery output terminals in the model.

R2
The resistance across the battery output terminals that represents battery self-discharge. This parameter is only visible when you

Generic Battery

select Include for the Self-discharge resistance, R2 parameter. The default value is $2 \mathrm{e}+03 \Omega$.

Ports	The block has the following ports:
+	Positive electrical voltage.
Examples	For an example of how you can create more detailed battery models, see the Simscape Lead-Acid Battery demo.

See Also Simscape DC Voltage Source, Simscape Controlled Voltage Source

Generic Linear Actuator

Purpose	Model generic linear actuator driven from DC voltage source or PWM driver
Library	Translational Actuators
Description	The Generic Linear Actuator block implements a model of a generic linear actuator designed to be driven from a DC voltage source or a
PWM driver. Define force-speed characteristics in terms of tabulated	
values for powering the motor at the rated voltage. This functionality	
enables you to model a motor without referencing an equivalent circuit.	

The motor or actuator architecture determines the way in which electrical losses depend on force. For example, a DC motor has losses that are proportional to the square of the current. As force is proportional to current, losses are also proportional to mechanical force. Most motors have an electrical loss term that is proportional to the square of mechanical force. The Generic Linear Actuator block calculates this loss term using the Motor efficiency (percent) and Speed at which efficiency is measured parameters that you provide.

Some motors also have a loss term that is independent of force. An example is a shunt motor where the field winding draws a constant current regardless of load. The Force-independent electrical losses parameter accounts for this effect.
The motor efficiency is the mechanical power divided by the sum of the mechanical power and both electrical loss terms. The block assumes that the speed at which the motor efficiency is defined is in the motoring quadrant and, therefore, positive.

You can operate the block in the reverse direction by changing the sign of the voltage applied. The H-Bridge block, for example, reverses motor direction if the voltage at the REV port is greater than the Reverse threshold voltage parameter. However, if you are using the block in reverse, specify the force-speed data for forward operation:

- Positive forces and positive speeds in the motoring quadrant.

Generic Linear Actuator

- Positive force and negative speeds in the generating counterclockwise quadrant.
- Negative force and positive speed in the generating clockwise quadrant.

Basic Assumptions and Limitations

This block has the following limitations:

- The force-speed curve data corresponds only to the rated voltage, so the block produces accurate results only when driven by plus or minus the rated voltage.
- The block requires you to provide force-speed data for the full range over which you use the actuator. To use the actuator in the generating and braking regions, provide additional data outside of the normal motoring region.
- Model behavior is sensitive to force-speed data. For example, no-load speed is correctly defined and finite only when the data crosses the speed axis.
- To drive the block from the H-Bridge block:
- Do not place any other blocks between the H-Bridge and the Generic Linear Actuator blocks.
- In the H-Bridge block dialog box, set the Freewheeling mode to Via one semiconductor switch and one freewheeling diode . Selecting Via two freewheeling diodes does not set the bridge output voltage to zero when the PWM input signal is low.
- In the H-Bridge, Generic Rotary Actuator, and Controlled PWM block dialog boxes, ensure that the Simulation mode is the same for all three blocks.

Generic Linear Actuator

Dialog
 Box and Parameters

Electrical Force Tab

Block Parameters: Generic Linear Actuator					
Generic Linear Actuator This block implements a model of generic linear actuator designed to be driven from a DC voltage source or PWM driver. The forcespeed characteristics are defined in terms of tabulated values for when the motor is powered at the rated voltage. The block can be driven in PWM or Averaged mode. In PWM mode, the applied voltage should either be the rated supply voltage, or a PWM voltage with amplitude equal to the rated supply voltage. In Averaged mode, the applied voltage should be the rated supply voltage multiplied by the fraction of the PWM period for which the motor is powered. If driving the block with the H -Bridge block, the Simulation mode parameter value must be the same for both blocks and also for the Controlled PWM Voltage block if used. Electrical losses are assumed to be the sum of a force-independent term plus a term proportional to the square of the force.					
Parameters					
Electrical Force \| Mechanical		Mechanical			
Speed values: [- 15 - 10 - 5051015202530]					
Force values:	[$43.532 .521 .510 .50-0.5$]			\checkmark	
Rated voltage:	12			\square	
Motor efficiency (percent):	70				
Speed at which efficiency is measured:	20			\checkmark	
Force-independent electrical losses:	2			\checkmark	
Simulation mode:	PWM			\square	
OK		Cancel	Help	Apply	

Speed values

Specify a vector of speeds, including their units, for your force-speed data. The default value is $\left[\begin{array}{llllllll}-15 & -10 & -5 & 0 & 5 & 10 & 15\end{array}\right.$ $202530 \mathrm{~J} \mathrm{~m} / \mathrm{s}$.

Force values

Specify a vector of forces, including their units, for your force-speed data. The default value is [$\begin{array}{lllllll}4 & 3.5 & 3.5 & 2 & 1.5 & 1\end{array}$ $0.50-0.5] \mathrm{N}$.

Rated voltage

Indicate the voltage for which the device you are modeling is rated. The default value is 12 V .

Generic Linear Actuator

Motor efficiency (percent)

Efficiency that the block uses to calculate force-dependent electrical losses. The default value is 70 .

Speed at which efficiency is measured

Speed that the block uses to calculate force-dependent electrical losses. The default value is $20 \mathrm{~m} / \mathrm{s}$.

Force-independent electrical losses

Fixed electrical loss associated with the actuator when the force is zero. The default value is 2 W .

Simulation mode

If you set the Simulation mode parameter to PWM, apply a PWM waveform switching between zero and rated volts to the block electrical terminals. The current drawn from the electrical supply is equal to the amount required to deliver the mechanical power and to compensate for electrical losses. If the applied voltage exceeds the rated voltage, the resultant force scales proportionately. However, applying anything other than the rated voltage can provide unrepresentative results. PWM is the default setting.

If you set the Simulation mode parameter to Averaged, the force generated in response to an applied voltage $V_{a v}$ is

$$
\frac{V_{a v}}{V_{\text {rated }}} \times F(v)
$$

where $F(v)$ is the force value at speed v. The current drawn from the supply is such that the product of the current and $V_{a v}$ is equal to the average power that is consumed.

Generic Linear Actuator

Mechanical Tab

Plunger mass

Mass of the moving part of the motor. The default value is 0.1 kg . The value can be zero.

Linear damping

Linear damping. The default value is $1 \mathrm{e}-05 \mathrm{~N} /(\mathrm{m} / \mathrm{s})$. The value can be zero.

Initial plunger speed

Speed of the plunger at the start of the simulation. The default value is $0 \mathrm{~m} / \mathrm{s}$.

Ports

This block has the following ports:

Generic Linear Actuator

$+$
Positive electrical conserving port.

Negative electrical conserving port.
C
Mechanical translational conserving port connected to the actuator case.

R
Mechanical translational conserving port connected to the plunger.

See Also
Generic Rotary Actuator and H-Bridge.

Generic Rotary Actuator

Purpose Model generic rotary actuator driven from DC voltage source or PWM driver
 Library Rotational Actuators
 Description

 The Generic Rotary Actuator block implements a model of a generic rotary actuator designed to be driven from a DC voltage source or PWM driver. You define torque-speed characteristics in terms of tabulated values for powering the motor at the rated voltage. This functionality allows you to model a motor without referencing an equivalent circuit.

The motor or actuator architecture determines the way in which electrical losses depend on torque. For example, a DC motor has losses that are proportional to the square of the current. As torque is proportional to current, losses are also proportional to mechanical torque. Most motors have an electrical loss term that is proportional to the square of mechanical torque. The Generic Rotary Actuator block calculates this loss term using the Motor efficiency (percent) and Speed at which efficiency is measured parameters that you provide.

Some motors also have a loss term that is independent of torque. An example is a shunt motor where the field winding draws a constant current regardless of load. The Torque-independent electrical losses parameter accounts for this effect.

The motor efficiency is the mechanical power divided by the sum of the mechanical power and both electrical loss terms. The block assumes that the speed at which the motor efficiency is defined is in the motoring quadrant and, therefore, positive.

You can operate the block in the reverse direction by changing the sign of the voltage that you apply. The H-Bridge block, for example, reverses motor direction if the voltage at the REV port is greater than the
Reverse threshold voltage parameter. However, if you are using the block in reverse, specify the torque-speed data for forward operation:

- Positive torques and positive speeds in the motoring quadrant.

Generic Rotary Actuator

- Positive torque and negative speeds in the generating counterclockwise quadrant.
- Negative torque and positive speed in the generating clockwise quadrant.

Basic
 Assumptions and Limitations

This block has the following limitations:

- The torque-speed curve data corresponds only to the rated voltage, so the block produces accurate results only when driven by plus or minus the rated voltage.
- In this block requires, you must provide torque-speed data for the full range over which you use the actuator. To use the actuator in the generating and braking regions, provide additional data outside of the normal motoring region.
- Model behavior is sensitive to torque-speed data. For example, no-load speed is correctly defined and finite only when the data crosses the speed axis.
- To drive the block from the H-Bridge block:
- Do not place any other blocks between the H-Bridge and the Generic Rotary Actuator blocks.
- In the H-Bridge block dialog box, set the Freewheeling mode to Via one semiconductor switch and one freewheeling diode . Selecting Via two freewheeling diodes does not set the bridge output voltage to zero when the PWM input signal is low.
- In the H-Bridge, Generic Rotary Actuator, and Controlled PWM block dialog boxes, ensure that the Simulation mode is the same for all three blocks.

Generic Rotary Actuator

Dialog
 Box and Parameters

Electrical Torque Tab

Speed values

Specify a vector of speeds, including their units, for your torque-speed data. The default value is $[-1.5 e+03-1000-500$ $050010001.5 \mathrm{e}+032 \mathrm{e}+032.5 \mathrm{e}+033 \mathrm{e}+03 \mathrm{Jrpm}$.

Torque values

Specify a vector of torques, including their units, for your torque-speed data. The default value is [0.040 .0350 .03 $0.025 \quad 0.02 \quad 0.015 \quad 0.01 \quad 0.0050-0.005] \mathrm{Nm}$.

Rated voltage
Indicate the voltage for which the device you are modeling is rated. The default value is 12 V .

Generic Rotary Actuator

Motor efficiency (percent)

The efficiency that the block uses to calculate torque-dependent electrical losses. The default value is 80 .

Speed at which efficiency is measured

The speed that the block uses to calculate torque-dependent electrical losses. The default value is $2 \mathrm{e}+03 \mathrm{rpm}$.

Torque-independent electrical losses

Fixed electrical loss associated with the actuator when the torque is zero. The default value is 0.1 W .

Simulation mode

If you set the Simulation mode parameter to PWM, apply a PWM waveform switching between zero and rated volts to the block electrical terminals. The current drawn from the electrical supply is equal to the amount required to deliver the mechanical power and to compensate for electrical losses. If the applied voltage exceeds the rated voltage, the resultant torque scales proportionately. However, applying anything other than the rated voltage can provide unrepresentative results. PWM is the default setting.

If you set the Simulation mode parameter to Averaged, the torque generated in response to an applied voltage $V_{a v}$ is

$$
\frac{V_{a v}}{V_{\text {rated }}} \times T(\omega)
$$

where $T(\omega)$ is the torque value at speed ω. The current drawn from the supply is such that the product of the current and $V_{a v}$ is equal to the average power that is consumed.

Generic Rotary Actuator

Mechanical Tab

Rotor inertia

Rotor resistance to change in motor motion. The default value is $1 \mathrm{e}-04 \mathrm{~kg}{ }^{*} \mathrm{~m}^{2}$. The value can be zero.

Rotor damping

Rotor damping. The default value is $1 \mathrm{e}-08 \mathrm{~N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})$. The value can be zero.

Initial rotor speed

Speed of the rotor at the start of the simulation. The default value is 0 rpm .

Ports

This block has the following ports:

Generic Rotary Actuator

Positive electrical conserving port.
Negative electrical conserving port.
C
Mechanical rotational conserving port.
R
Mechanical rotational conserving port.

See Also

Generic Linear Actuator and H-Bridge.

H-Bridge

Purpose Model H-bridge motor driver
 Library
 Drivers

Description The H-Bridge block represents an H-bridge motor driver. The block has the following two Simulation mode options:

- PWM - The H-Bridge output is a controlled voltage that depends on the input signal at the PWM port. If the input signal has a value greater than the Enable threshold voltage parameter value, the H -Bridge output is on and has a value equal to the value of the Output voltage amplitude parameter. If it has a value less than the Enable threshold voltage parameter value, the block maintains the load circuit using one of the following two Freewheeling mode options:
- A freewheeling diode and a semiconductor switch
- Two freewheeling diodes

The signal at the REV port determines the polarity of the output. If the value of the signal at the REV port is less than the value of the Reverse threshold voltage parameter, the output has positive polarity; otherwise, it has negative polarity.

- Averaged - The H-Bridge output is:

$$
\frac{V_{O} V_{P W M}}{A_{P W M}}-I_{O U T} R_{O N}
$$

Where:

- V_{O} is the value of the Output voltage amplitude parameter.
- $V_{P W M}$ is the value of the voltage at the PWM port.
- $A_{P W M}$ is the value of the PWM signal amplitude parameter.
- $I_{\text {OUT }}$ is the value of the output current.
- $R_{O N}$ is the Bridge on resistance parameter.

Basic
 Assumptions and Limitations and Limitations

Set the Simulation mode parameter to Averaged to speed up simulations when driving the H-Bridge block with a Controlled PWM Voltage block. You must also set the Simulation mode parameter of the Controlled PWM Voltage block to Averaged mode. This applies the average of the demanded PWM voltage to the motor. The Averaged mode assumes that the effect of the motor inductive term is small at the PWM frequency. To verify this assumption, run the simulation using the PWM mode and compare the results to those obtained from using the Averaged mode.

The model has the following limitations:

- If you are linearizing your model, set the Simulation mode parameter to Averaged and ensure that you have specified the operating point correctly. You can only linearize the H-Bridge block for inputs that are greater than zero and less than the PWM signal amplitude.

H-Bridge

Dialog Box and Parameters

Enable threshold voltage

Threshold above which the voltage at the PWM port must rise to enable the H-Bridge output. This parameter is used only when the Simulation mode parameter is set to PWM. The default value is 2.5 V .

PWM signal amplitude

The amplitude of the signal at the PWM input. The H-Bridge block uses this parameter only when the Simulation mode parameter is set to Averaged. The default value is 5 V .

Reverse threshold voltage

When the voltage at the REV port is greater than this threshold, the output polarity becomes negative. The default value is 2.5 V .

Braking threshold voltage

When the voltage at the BRK port is greater than this threshold, the H -Bridge output terminals are short-circuited via the following series of devices:

- One bridge arm
- One bridge arm in parallel with a conducting freewheeling diode
The default value is 2.5 V .

Output voltage amplitude

The amplitude of the voltage across the H-Bridge output ports when the output is on. The default value is 12 V .

Simulation mode

Select one of the following options for the type of output voltage:

- PWM - The output voltage is a pulse-width modulated signal. This is the default option.
- Averaged - The output voltage is a constant whose value is equal to the average value of the PWM signal.

Freewheeling mode

Select one of the following options for the type of H-Bridge dissipation circuit:

- Via one semiconductor switch and one freewheeling diode - In this mode, the block controls the load by maintaining one high-side bridge arm permanently on and using the PWM signal to modulate the corresponding low-side bridge arm. This means that the block uses only one of the freewheeling diodes in completing the dissipation circuit when the bridge turns off. This option is the default.
- Via two freewheeling diodes - In this mode, all bridge arms are off during the bridge off-state. This means that the

H-Bridge

block dissipates the load current across the power supply by two freewheeling diodes.
This parameter is only visible when you select PWM for the Simulation mode parameter.

Total bridge on resistance

The total effective resistance of the two semiconductor switches that connect the load to the two power rails when the voltage at the PWM port is greater than the Enable threshold voltage. The default value is 0.1Ω.

Freewheeling diode on resistance

The total resistance in the freewheeling diodes that dissipate the current that flows through the motor when the voltage at the PWM port is less than the Enable threshold voltage. This parameter is only visible when you select PWM for the Simulation mode parameter. The default value is 0.1Ω.

Ports

The block has the following ports:
+ref
Positive electrical output voltage.
-ref
Negative electrical output voltage.
PWM
Pulse-width modulated signal. The voltage is defined relative to the REF port.

REF
Floating zero volt reference.
REV
Voltage that controls when to reverse the polarity of the H-Bridge output. The voltage is defined relative to the REF port.

BRK
Voltage that controls when to short circuit the H-Bridge output. The voltage is defined relative to the REF port.

Examples
See the Controlled DC Motor, Linear Electrical Actuator (System-Level Model) and Linear Electrical Actuator (Implementation Model) demos.

Incremental Shaft Encoder

Purpose

Library

Description

Basic Assumptions and Limitations

Model device that converts information about angular shaft position into electrical pulses

Sensors

The Incremental Shaft Encoder block represents a device that converts information about the angular position of a shaft into electrical pulses. The block produces N pulses on ports A and B per shaft revolution, where N is the value you specify for the Pulses per revolution parameter. Pulses A and B are 90 degrees out of phase. If the shaft rotates in a positive direction, then A leads B. The block produces a single index pulse on port Z once per revolution. The Z pulse positive transition always coincides with an A pulse positive transition. The voltages at output ports A, B, and Z are defined relative to the REF reference port voltage.
Use this block if you need to model the shaft encoder signals, either to support development of a decoding algorithm, or to include the quantization effects. Otherwise, use the Simscape Ideal Rotational Motion Sensor block.

The Incremental Shaft Encoder block has the following limitations:

- The Incremental Shaft Encoder block is not linearizable. Use the Simscape Ideal Rotational Motion Sensor block for control design studies where you need to linearize your model.

Incremental Shaft Encoder

Dialog Box and Parameters

Pulses per revolution

The number of pulses produced on each of the A and B phases per revolution of the shaft. The default value is 2 .

Output voltage amplitude

The amplitude of the shaft encoder output voltage when the output is high. The default value is 5 V .

Index pulse offset relative to shaft initial angle

The offset of the index pulse Z relative to the angle of the shaft at the start of the simulation. This parameter lets you set the initial location of the index pulse. The default value is 0°.

Ports The block has the following ports:

R

Mechanical rotational conserving port associated with the sensor positive probe.

Incremental Shaft Encoder

C
Mechanical rotational conserving port associated with the sensor negative (reference) probe.

A
Encoded electrical output.
B
Encoded electrical output.
Z
Index, or synchronization, electrical output.
REF
Floating zero volt reference.
See Also Simscape Ideal Rotational Motion Sensor

Purpose

Model induction motor powered by ideal AC supply

Library

Description

Rotational Actuators
The Induction Motor block represents the electrical and torque characteristics of an induction motor powered by an ideal AC supply. The following figure shows the equivalent circuit model of the Induction Motor block.

- R_{1} is the stator resistance.
- R_{2} is the rotor resistance with respect to the stator.
- L_{1} is the stator inductance.
- L_{2} is the rotor inductance with respect to the stator.
- L_{m} is magnetizing inductance.
- s is the rotor slip.

Induction Motor

- \bar{V} and \bar{I} are the sinusoidal supply voltage and current phasors.

Rotor slip s is defined in terms of the mechanical rotational speed ω_{m}, the number of pole pairs p, and the electrical supply frequency ω by

$$
s=1-\frac{p \omega_{m}}{\omega}
$$

This means that the slip is one when starting, and zero when running synchronously with the supply frequency.

For an n-phase induction motor the torque-speed relationship is given by:

$$
T=\frac{n p R_{2}}{s \omega} \frac{V_{r m s}{ }^{2}}{\left(R_{1}+R_{2}+\frac{1-s}{s} R_{2}\right)^{2}+\left(X_{1}+X_{2}\right)^{2}}
$$

where:

- $V_{r m s}$ is the line-neutral supply voltage for a star-configuration induction motor, and the line-to-line voltage for a delta-configuration induction motor.
- n is the number of phases.

You can parameterize this block in terms of the preceding equivalent circuit model parameters or in terms of the motor ratings the block uses to derive these parameters.

This block produces a positive torque acting from the mechanical C to R ports.

Basic	The model is based on the following assumptions:
Assumptions	- The block does not model the starting mechanism for a single-phase
and induction motor.	
Limitations - When you parameterize the block by motor ratings, the block derives the equivalent circuit model parameters by assuming that the magnetizing inductance L_{m} is very large compared to L_{1} and L_{2}.	

Induction Motor

Dialog
 Box and Parameters

Electrical Torque Tab

Model parameterization

Select one of the following methods for block parameterization:

- By motor ratings - Provide electrical torque parameters that the block converts to an equivalent circuit model of the motor assuming that the magnetizing inductance is very large compared to L_{1} and L_{2}. This is the default method.
- By equivalent circuit parameters - Provide electrical parameters for an equivalent circuit model of the motor.

Stator resistance R1

Resistance of the stator winding. The default value is 1Ω. This parameter is only visible when you select By equivalent circuit parameters for the Model parameterization parameter.

Rotor resistance R2

Resistance of the rotor, specified with respect to the stator. The default value is 1Ω. This parameter is only visible when you select By equivalent circuit parameters for the Model parameterization parameter.
Stator inductance L1
Inductance of the stator winding. The default value is 0.02 H . This parameter is only visible when you select By equivalent circuit parameters for the Model parameterization parameter.

Rotor inductance L2

Inductance of the rotor, specified with respect to the stator. The default value is 0.02 H . This parameter is only visible when you select By equivalent circuit parameters for the Model parameterization parameter.

Magnetizing inductance Lm

Magnetizing inductance of the stator. Its value is hard to estimate from motor parameters, but the effect is usually small. If you do not know its value, use a typical value of 25 times the Stator inductance L 1 value. The default value is 0.5 H .

Induction Motor

Rated mechanical power

Mechanical power the motor delivers when running at the rated speed. The default value is 825 W . This parameter is only visible when you select By motor ratings for the Model parameterization parameter.

Rated speed

Speed at which the motor delivers the specified Rated mechanical power value. The default value is $3.5 \mathrm{e}+03 \mathrm{rpm}$. This parameter is only visible when you select By motor ratings for the Model parameterization parameter.

Rated RMS line-to-line voltage

Line-to-line voltage at which the motor ratings are specified. The default value is 200 V . This parameter is only visible when you select By motor ratings for the Model parameterization parameter.

Rated supply frequency

Frequency of the AC supply voltage at which the motor ratings are specified. The default value is 60 hertz. This parameter is only visible when you select By motor ratings for the Model parameterization parameter.

Rated RMS line current

Line current at which the motor delivers the specified Rated mechanical power value. The default value is 2.7 A . This parameter is only visible when you select By motor ratings for the Model parameterization parameter.

L1+L2 parameterization

Select one of the following parameterizations for the equivalent circuit inductance, $\mathrm{L}_{1}+\mathrm{L}_{2}$, of the motor:

- From starting current - Estimate the total equivalent circuit inductance from the motor starting current. This is the default method.
- From maximum torque - Estimate the total equivalent circuit inductance from the motor maximum torque.

This parameter is only visible when you select By motor ratings for the Model parameterization parameter.

RMS starting (or locked rotor) line current

The current that flows when the motor starts, or when the rotor is locked so that it cannot turn. The default value is 7.5 A . This parameter is only visible when you select By motor ratings for the Model parameterization parameter and From starting current for the L1+L2 parameterization parameter.

Maximum torque

The maximum value of torque on the torque-slip curve. The default value is $3.3 \mathrm{~N} * \mathrm{~m}$. This parameter is only visible when you select By motor ratings for the Model parameterization parameter and From maximum torque for the $\mathbf{L} 1+\mathbf{L} 2$ parameterization parameter.

R1 parameterization

Select one of the following parameterizations for the equivalent circuit resistance, R_{1}, of the motor:

- From motor efficiency - Calculate R_{1} from the motor efficiency. This is the default method.
- From power factor - Calculate R_{1} from the motor power factor.
- Use measured stator resistance R 1 - Measure R_{1} directly. This parameter is only visible when you select By motor ratings for the Model parameterization parameter.

Motor efficiency (percent)

the percentage of input power to the motor that gets delivered to the mechanical load when running at the Rated speed value. The default value is 95 . This parameter is only visible when you select By motor ratings for the Model parameterization parameter and From motor efficiency for the R1 parameterization parameter.

Induction Motor

Motor power factor

The cosine of the angle by which the supply current lags the supply voltage when running at the Rated mechanical power value. The default value is 0.93 . This parameter is only visible when you select By motor ratings for the Model parameterization parameter and From power factor for the R1 parameterization parameter.

Measured stator resistance R1

the measured stator resistance. The default value is 1Ω. This parameter is only visible when you select By motor ratings for the Model parameterization parameter and Use measured stator resistance R1 for the R1 parameterization parameter.

Number of pole pairs

Total number of pole pairs for the motor. The default value is 1.

Number of phases

Number of supply phases. The default value is 3.

Stator connections

Select one of the following motor configurations:

- Delta configuration - Connect the motor stator windings in delta configuration. This is the default method.
- Star configuration - Connect the motor stator windings in star configuration.

Induction Motor

Power Supply Tab

Induction Motor

Supply RMS line-to-line voltage

The line-to-line voltage that supplies the motor. The default value is 200 V .

Supply frequency
Frequency of the AC supply voltage. The default value is 60 hertz.

Induction Motor

Mechanical Tab

Block Parameters: Induction Motor

-Induction Motor
This block represents the electrical and torque characteristics of an induction motor powered by an ideal $A C$ supply. The block may be parameterized via motor ratings or equivalent circuit parameters expressed with respect to the stator. Physical signal outputs are provided for slip (s), real power (W), imaginary power (VAR) and mechanical speed (wm). If used to model a singlephase induction motor, then the effect of the starting mechanism (e.g. shaded-pole) is not modeled.

The block produces a positive torque acting from the mechanical C to R ports.

Induction Motor

Rotor inertia

Rotor inertia. The default value is $0.1 \mathrm{~kg}^{*} \mathrm{~m}^{2}$. The value can be zero.

Rotor damping

Rotor damping. The default value is $2 e-06 \mathrm{~N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})$. The value can be zero.

Initial rotor speed

Speed of the rotor at the start of the simulation. The default value is 0 rpm .
Ports The block has the following ports:
wReal power.
wmMechanical speed.
VARImaginary power.sMotor slip.
CMechanical rotational conserving port.RMechanical rotational conserving port.
References [1] S.E. Lyshevski. Electromechanical Systems, Electric Machines, and Applied Mechatronics, CRC, 1999.
See Also DC Motor, Servomotor, Shunt Motor, and Universal Motor.

Light-Emitting Diode

Purpose

Library

Description

Model light-emitting diode as exponential diode and current sensor in series

Sensors

The Light-Emitting Diode block represents a light-emitting diode as an exponential diode in series with a current sensor. The optical power presented at the signal port W is equal to the product of the current flowing through the diode and the Optical power per unit current parameter value.

The exponential diode model provides the following relationship between the diode current I and the diode voltage V :

$$
\begin{array}{ll}
I=I S \times\left(e^{\frac{q V}{N k T}}-1\right) & V>-V z \\
I=-I S \times\left(e^{\frac{-q(V+V z)}{k T}}-e^{\frac{q V}{N k T}}\right) & V \leq-V z
\end{array}
$$

where:

- q is the elementary charge on an electron (1.602176e-19 Coulombs).
- k is the Boltzmann constant ($1.3806503 \mathrm{e}-23 \mathrm{~J} / \mathrm{K}$).
- $V z$ is the Reverse breakdown voltage BV parameter value.
- N is the emission coefficient.
- IS is the saturation current.
- T is the temperature at which the diode parameters are specified, as defined by the Measurement temperature parameter value.

When $\frac{q V}{N k T}>80$, the block replaces $e^{\frac{q V}{N k T}}$ with $\left(\frac{q V}{N k T}-79\right) e^{80}$, which matches the gradient of the diode current at $q V /(N k T)=80$ and

Light-Emitting Diode

extrapolates linearly. When $\frac{q V}{N k T}<-79$, the block replaces $e^{\frac{q V}{N k T}}$ with $\left(\frac{q V}{N k T}+80\right) e^{-79}$, which also matches the gradient and extrapolates lineafly. Typical electrical circuits do not reach these extreme values. The block provides this linear extrapolation to help convergence when solving for the constraints during simulation.
When you select Use parameters IS and N for the Parameterization parameter, you specify the diode in terms of the Saturation current IS and Emission coefficient N parameters. When you select Use I-V curve data points for the Parameterization parameter, you specify two voltage and current measurement points on the diode I-V curve and the block derives the $I S$ and N values. When you specify current and voltage measurements, the block calculates $I S$ and N as follows:

- $\mathrm{N}=\left(\left(V_{1}-V_{2}\right) / V_{t}\right) /\left(\log \left(I_{1}\right)-\log \left(I_{2}\right)\right)$
- $\operatorname{IS}=\left(I_{1} /\left(\exp \left(V_{1} /\left(\mathrm{N} V_{t}\right)\right)-1\right)+I_{2} /\left(\exp \left(V_{2} /\left(\mathrm{N} V_{t}\right)\right)-1\right)\right) / 2$
where:
- $V_{t}=k T / q$
- V_{1} and V_{2} are the values in the Voltages [V1 V2] vector.
- I_{1} and I_{2} are the values in the Currents [I1 I2] vector.

The exponential diode model provides the option to include a junction capacitance:

- When you select Fixed or zero junction capacitance for the Junction capacitance parameter, the capacitance is fixed.
- When you select Use parameters CJO, VJ, M \& FC for the Junction capacitance parameter, the block uses the coefficients

Light-Emitting Diode

$C J O, V J, M$, and $F C$ to calculate a junction capacitance that depends on the junction voltage.

- When you select Use C-V curve data points for the Junction capacitance parameter, the block uses three capacitance values on the C-V capacitance curve to estimate CJO, VJ, and M and uses these values with the specified value of $F C$ to calculate a junction capacitance that depends on the junction voltage. The block calculates $C J O, V J$, and M as follows:
- CJ0 $=C_{1}\left(\left(V_{R 2}-V_{R 1}\right) /\left(V_{R 2}-V_{R 1}\left(C_{2} / C_{1}\right)^{-1 / M}\right)\right)^{M}$
- $V J=-\left(-V_{R 2}\left(C_{1} / C_{2}\right)^{-1 / M}+V_{R 1}\right) /\left(1-\left(C_{1} / C_{2}\right)^{-1 / M}\right)$
- $M=\log \left(C_{3} / C_{2}\right) / \log \left(V_{R 2} / V_{R 3}\right)$
where:
- $V_{R 1}, V_{R 2}$, and $V_{R 3}$ are the values in the Reverse bias voltages [VR1 VR2 VR3] vector.
- C_{1}, C_{2}, and C_{3} are the values in the Corresponding capacitances [C1 C2 C3] vector.
It is not possible to estimate $F C$ reliably from tabulated data, so you must specify its value using the Capacitance coefficient FC parameter. In the absence of suitable data for this parameter, use a typical value of 0.5 .

The reverse bias voltages (defined as positive values) should satisfy $V_{R 3}>V_{R 2}>V_{R 1}$. This means that the capacitances should satisfy $C_{1}>C_{2}>C_{3}$ as reverse bias widens the depletion region and hence reduces capacitance. Violating these inequalities results in an error. Voltages $V_{R 2}$ and $V_{R 3}$ should be well away from the Junction potential $V J$. Voltage $V_{R 1}$ should be less than the Junction potential $V J$, with a typical value for $V_{R 1}$ being 0.1 V .

The voltage-dependent junction capacitance is defined in terms of the capacitor charge storage Q_{j} as:

Light-Emitting Diode

- For $V<F C \times V J$:

$$
Q_{j}=C J 0 \times(V J /(M-1)) \times\left((1-V / V J)^{1-M}-1\right)
$$

- For $V \geq F C \times V J$:

$$
\begin{aligned}
Q_{j}= & C J 0 \times F_{1}+\left(C J 0 / F_{2}\right) \times\left(F_{3} \times(V-F C \times V J)\right. \\
& \left.+0.5 *(M / V J) *\left(V^{2}-(F C \times V J)^{2}\right)\right)
\end{aligned}
$$

where:

- $\left.F_{1}=(V J /(1-M)) \times\left(1-(1-F C)^{1-M}\right)\right)$
- $\left.\left.F_{2}=(1-F C)^{1+M}\right)\right)$
- $F_{3}=1-F C \times(1+M)$

These equations are the same as used in [2], except that the temperature dependence of $V J$ and $F C$ is not modeled. This model does not include the diffusion capacitance term that affects performance for high frequency switching applications.

Basic
 Assumptions and Limitations

The Light-Emitting Diode block has the following limitations:

- When you select Use I-V curve data points for the Parameterization parameter, choose a pair of voltages near the diode turn-on voltage. Typically this is in the range from 0.05 to 1 Volt. Using values outside of this region may lead to numerical issues and poor estimates for $I S$ and N.
- This block does not model temperature-dependent effects. SimElectronics simulates the block at the temperature at which the component behavior was measured, as specified by the Measurement temperature parameter value.

Light-Emitting Diode

Dialog
 Box and Parameters

- You may need to use nonzero ohmic resistance and junction capacitance values to prevent numerical simulation issues, but the simulation may run faster with these values set to zero.

Main Tab

Optical power per unit current

The amount of optical power the light-emitting diode generates per unit of current flowing through the diode. The default value is 0.005 W/A.

Parameterization

Select one of the following methods for model parameterization:

- Use I-V curve data points - Specify measured data at two points on the diode I-V curve. This is the default method.

Light-Emitting Diode

- Use parameters IS and N - Specify saturation current and emission coefficient.

Currents [I1 I2]

A vector of the current values at the two points on the diode I-V curve that the block uses to calculate $I S$ and N. This parameter is only visible when you select Use I-V curve data points for the Parameterization parameter. The default value is [0.0017 0.003] A.

Voltages [V1 V2]

A vector of the voltage values at the two points on the diode I-V curve that the block uses to calculate $I S$ and N. This parameter is only visible when you select Use I-V curve data points for the Parameterization parameter. The default value is [0.9 1.05] V.

Saturation current IS

The magnitude of the current that the ideal diode equation approaches asymptotically for very large reverse bias levels. This parameter is only visible when you select Use parameters IS and N for the Parameterization parameter. The default value is $5 \mathrm{e}-05 \mathrm{~A}$.

Measurement temperature

The temperature at which IS or the I-V curve was measured. The default value is $25^{\circ} \mathrm{C}$.

Emission coefficient \mathbf{N}

The diode emission coefficient or ideality factor. This parameter is only visible when you select Use parameters IS and N for the Parameterization parameter. The default value is 10 .

Light-Emitting Diode

Ohmic Resistance Tab

Ohmic resistance RS

The series diode connection resistance. The default value is 0.1Ω.

Light-Emitting Diode

Junction Capacitance Tab

Junction capacitance

Select one of the following options for modeling the junction capacitance:

- Fixed or zero junction capacitance - Model the junction capacitance as a fixed value.
- Use C-V curve data points - Specify measured data at three points on the diode C-V curve.
- Use parameters CJO, VJ, M \& FC - Specify zero-bias junction capacitance, junction potential, grading coefficient, and forward-bias depletion capacitance coefficient.

Light-Emitting Diode

Zero-bias junction capacitance CJ0

The value of the capacitance placed in parallel with the exponential diode term. This parameter is only visible when you select Fixed or zero junction capacitance or Use parameters CJO, VJ, M \& FC for the Junction capacitance parameter. The default value is 20 pF .

Reverse bias voltages [VR1 VR2 VR3]

A vector of the reverse bias voltage values at the three points on the diode C-V curve that the block uses to calculate CJO, VJ, and M. This parameter is only visible when you select Use C-V curve data points for the Junction capacitance parameter. The default value is [$\left.\begin{array}{llll}0.1 & 10 & 100\end{array}\right] \mathrm{V}$.

Corresponding capacitances [C1 C2 C3]

A vector of the capacitance values at the three points on the diode $\mathrm{C}-\mathrm{V}$ curve that the block uses to calculate CJO, VJ, and M. This parameter is only visible when you select Use C-V curve data points for the Junction capacitance parameter. The default value is [$\left.\begin{array}{lll}15 & 10 & 2\end{array}\right] \mathrm{pF}$.

Junction potential VJ

The junction potential. This parameter is only visible when you select Use parameters CJO, VJ, M \& FC for the Junction capacitance parameter. The default value is 1 V .

Grading coefficient M

The grading coefficient. This parameter is only visible when you select Use parameters CJO, VJ, M \& FC for the Junction capacitance parameter. The default value is 0.5 .

Capacitance coefficient FC

Fitting coefficient that quantifies the decrease of the depletion capacitance with applied voltage. This parameter is only visible when you select Use C-V curve data points or Use parameters CJO, VJ, M \& FC for the Junction capacitance parameter. The default value is 0.5 .

Ports The block has the following ports:

Light-Emitting Diode

w
Optical output power.
$+$
Electrical conserving port associated with the diode positive terminal.

Electrical conserving port associated with the diode negative terminal.

References
[1] H. Ahmed and P.J. Spreadbury. Analogue and digital electronics for engineers. 2nd Edition, Cambridge University Press, 1984.

[2] G. Massobrio and P. Antognetti. Semiconductor Device Modeling with SPICE. 2nd Edition, McGraw-Hill, 1993.

See Also
Diode, Optocoupler, Photodiode

Purpose

Model N-Channel IGBT

Library

Description
Semiconductor Devices

The N-Channel IGBT block models a PNP Bipolar transistor driven by an N-Channel MOSFET, as shown in the following figure:

The MOSFET source is connected to the bipolar transistor collector, and the MOSFET drain is connected to the bipolar transistor base. The MOSFET uses the equations shown in the N-Channel MOSFET block reference page. The bipolar transistor uses the equations shown in the PNP Bipolar Transistor block reference page, but with the addition of an emission coefficient parameter N that scales $k T / q$.

The N-Channel IGBT block uses the on and off characteristics you specify in the block dialog box to estimate the parameter values for the underlying N-Channel MOSFET and PNP bipolar transistor.

- The block uses the off characteristics to calculate the base-emitter voltage, $V_{b e}$, and the saturation current, I_{S}
1 When the transistor is off, the gate-emitter voltage is zero and the IGBT base-collector voltage is large, so the PNP base and collector current equations simplify to:

$$
\begin{aligned}
& I_{b}=0=I_{s}\left[\frac{1}{\beta_{F}}\left(e^{-q V_{b e} /(N k T)}-1\right)-\frac{1}{\beta_{R}}\right] \\
& I_{c}=I_{s}\left[e^{-q V_{b e} /(N k T)}+1 / \beta_{R}\right]
\end{aligned}
$$

where N is the Emission coefficient \mathbf{N} parameter value, I_{c} is the Zero gate voltage collector current Ices parameter value, and I_{c} and I_{b} are defined as positive flowing out of the collector and base respectively. See the PNP Bipolar Transistor reference page for definitions of the remaining variables.

2 The block sets β_{R} and β_{F} to typical values of 1 and 50 , so these two equations can be used to solve for $V_{b e}$ and I_{S} :

$$
\begin{aligned}
& V_{b e}=\frac{-N k T}{q} \log \left(1+\frac{\beta_{F}}{\beta_{R}}\right) \\
& I_{s}=\frac{I_{c}}{e^{-q V_{b e} /(N k T)}+\frac{1}{\beta_{R}}}
\end{aligned}
$$

Note The block doesn't require and exact value for β_{F} because it can adjust the MOSFET gain K to ensure the overall device gain is correct.

- The block uses the on characteristics to calculate the MOSFET gain, K.

1 The block approximates the base saturation current as

$$
I_{b(s a t)}=\frac{I_{c e(s a t)}}{\beta_{F}+1}
$$

where $I_{\text {ce(sat) }}$ is the Collector-emitter saturation current Ice(sat) parameter value.

2 When saturated, PNP transistor base current equation simplifies to:

$$
I_{b}=I_{s}\left[\frac{1}{\beta_{F}}\left(e^{-q V_{b e} /(N k T)}-1\right)-\frac{1}{\beta_{R}}\right]
$$

The block substitutes $I_{b(s a t)}$ for I_{b} and solves this equation for $V_{b e(s a t)}$:

$$
V_{b e(s a t)}=\frac{-N k T}{q} \log \left(\beta_{F}\left(\frac{I_{b(s a t)}}{I_{s}}+\frac{1}{\beta_{R}}\right)+1\right)
$$

3 When saturated, the MOSFET equation is:

$$
I_{d s}=I_{b}=K\left[\left(V_{G E(s a t)}-V_{t h}\right) V_{d s}-\frac{V_{d s}^{2}}{2}\right]
$$

where $V_{t h}$ is the Gate-emitter threshold voltage Vge(th) parameter value and $V_{G E(s a t)}$ is the Gate-emitter voltage for $\{$ Vce(sat),Ice(sat) $\}$ parameter value.
$V_{d s}$ is related to the transistor voltages as $V_{d s}=V_{C E}-V_{b e}$. The block substitutes this relationship for $V_{d s}$, sets the base-emitter voltage and base current to their saturated values, and rearranges the MOSFET equation to give

$$
K=\frac{I_{b(s a t)}}{\left[\left(V_{G E(s a t)}-V_{t h}\right)\left(V_{b e(s a t)}+V_{C E(s a t)}\right)-\frac{\left(V_{b e(s a t)}+V_{C E(s a t)}\right)^{2}}{2}\right]}
$$

where $V_{C E(s a t)}$ is the Collector-emitter saturation voltage Vce(sat) parameter value.

N-Channel IGBT

These calculations ensure the zero gate voltage collector current and collector-emitter saturation voltage are exactly met at these two specified conditions. However, the current-voltage plots are very sensitive to the emission coefficient N and the precise value of $V_{t h}$. If the manufacturer datasheet gives current-voltage plots for different $V_{G E}$ values, then the N and $V_{t h}$ can be tuned by hand to improve the match.

The block models gate junction capacitance as a fixed gate-emitter capacitance $C_{G E}$ and a fixed gate-collector capacitance $C_{G C}$. If you select Specify using equation parameters directly for the Parameterization parameter, you specify these values directly using the Gate-emitter junction capacitance and Gate-collector junction capacitance parameters. Otherwise, the block derives them from the Input capacitance Cies and Reverse transfer capacitance Cres parameter values that IGBT datasheets usually provide. The two parameterizations are related as follows:

- $C_{G E}=$ Cres
- $C_{G C}=$ Cies - Cres

Basic
 Assumptions and Limitations

The model is based on the following assumptions:

- This block does not allow you to specify initial conditions on the junction capacitances. If you select the Start simulation from steady state option in the Solver Configuration block, the block solves the initial voltages to be consistent with the calculated steady state. Otherwise, voltages are zero at the start of the simulation.
- This block does not model temperature-dependent effects. SimElectronics simulates the block at the temperature at which the component behavior was measured, as specified by the Measurement temperature parameter value.
- You may need to use nonzero junction capacitance values to prevent numerical simulation issues, but the simulation may run faster with these values set to zero.

Dialog Box and Parameters

Main Tab

Zero gate voltage collector current Ices

The collector current that flows when the gate-emitter voltage is set to zero, and a large collector-emitter voltage is applied i.e. the device is in the off-state. The default value is 2 mA .

Gate-emitter threshold voltage Vge(th)

The threshold voltage used in the MOSFET equations. The default value is 6 V .

Collector-emitter saturation voltage Vce(sat)

The collector-emitter voltage for a typical on-state as specified by the manufacturer. The default value is 2.8 V .

Collector-emitter saturation current Ice(sat)
The collector-emitter current when the gate-emitter voltage is $V_{g e(s a t)}$ and collector-emitter voltage is $V_{c e(s a t)}$. The default value is 400 A.

Gate-emitter voltage for $\{$ Vce(sat),Ice(sat)\}

The gate voltage used when measuring $V_{c e(s a t)}$ and $I_{c e(s a t) \text {. }}$. The default value is 15 V .

Emission coefficient N

The emission coefficient or ideality factor of the bipolar transistor. The default value is 1 .

Measurement temperature

The temperature for which the parameters are quoted. It is also the temperature at which the device is simulated. The default value is 25 C .

Junction Capacitance Tab

Parameterization

Select one of the following methods for block parameterization:

- Specify from a datasheet - Provide parameters that the block converts to junction capacitance values. This is the default method.
- Specify using equation parameters directly - Provide junction capacitance parameters directly.

Input capacitance Cies

The gate-emitter capacitance with the collector shorted to the source. This parameter is only visible when you select Specify from a datasheet for the Model junction capacitance parameter. The default value is 26.4 nF .

Reverse transfer capacitance Cres

The collector-gate capacitance with the emitter connected to ground. This parameter is only visible when you select Specify from a datasheet for the Model junction capacitance parameter. The default value is 2.7 nF .

Gate-emitter junction capacitance

The value of the capacitance placed between the gate and the emitter. This parameter is only visible when you select Specify using equation parameters directly for the Model junction capacitance parameter. The default value is 23.7 nF .

Gate-collector junction capacitance

The value of the capacitance placed between the gate and the collector. This parameter is only visible when you select Specify using equation parameters directly for the Model junction capacitance parameter. The default value is 2.7 nF .

Ports The block has the following ports:

C
Electrical conserving port associated with the PNP emitter terminal.

G
Electrical conserving port associated with the MOSFET gate terminal.

E
Electrical conserving port associated with the PNP collector terminal.

Purpose

Model N-Channel JFET

Library

Description
Semiconductor Devices

The N-Channel JFET block uses the Shichman and Hodges equations to represent an N -Channel JFET using a model with the following structure:

G is the transistor gate, D is the transistor drain and S is the transistor source. The drain-source current, $I_{d s}$, depends on the region of operation and whether the transistor is operating in normal or inverse mode.

- In normal mode ($V_{d s} \geq 0$), the block provides the following relationship between the drain-source current $I_{d s}$ and the drain-source voltage $V_{d s}$.

N-Channel JFET

Region	Applicable Range of $\boldsymbol{V}_{\text {gs }}$ and $\boldsymbol{V}_{d s}$ Values	Corresponding $I_{d s}$ Equation
	$V_{g s}-V_{t o} \leq 0$	$I_{d s}=0$
Off	$0<V_{d s}<V_{g s}-V_{t o}$	$I_{d s}=\beta V_{d s}\left(2\left(V_{g s}-V_{t o}\right)-V_{d s}\right)\left(1+\lambda V_{d s}\right)$
Linear	$0<V_{g s}-V_{t o} \leq V_{d s}$	$I_{d s}=\beta\left(V_{g s}-V_{t o}\right)^{2}\left(1+\lambda V_{d s}\right)$
Saturated		

- In inverse mode ($V_{d s}<0$), the block provides the following relationship between the drain-source current $I_{d s}$ and the drain-source voltage $V_{d s}$.

Region	Applicable Range of $\boldsymbol{V}_{\mathbf{g s}}$ and $\boldsymbol{V}_{\mathbf{d s}}$ Values	Corresponding $I_{d s}$ Equation
Off	$V_{g d}-V_{t o} \leq 0$	$I_{d s}=0$
Linear	$0<-V_{d s}<V_{g s}-V_{t o}$	$I_{d s}=\beta V_{d s}\left(2\left(V_{g d}-V_{t o}\right)+V_{d s}\right)\left(1-\lambda V_{d s}\right)$
Saturated	$0<V_{g d}-V_{t o} \leq-V_{d s}$	$I_{d s}=-\beta\left(V_{g d}-V_{t o}\right)^{2}\left(1-\lambda V_{d s}\right)$

In the preceding equations:

- $V_{g s}$ is the gate-source voltage.

N-Channel JFET

- $V_{g d}$ is the gate-drain voltage.
- $V_{t o}$ is the threshold voltage. If you select Specify using equation parameters directly for the Parameterization parameter, $V_{\text {to }}$ is the Threshold voltage parameter value. Otherwise, the block calculates $V_{t o}$ from the datasheet parameters you specify.
- β is the transconductance parameter. If you select Specify using equation parameters directly for the Parameterization parameter, β is the Transconductance parameter parameter value. Otherwise, the block calculates β from the datasheet parameters you specify.
- λ is the channel-length modulation parameter. If you select Specify using equation parameters directly for the Parameterization parameter, λ is the Channel-length modulation parameter value. Otherwise, the block calculates λ from the datasheet parameters you specify.

The currents in each of the diodes satisfy the exponential diode equation

$$
\begin{aligned}
& I_{g d}=I_{S} \times\left(e^{\frac{q V_{g d}}{k T}}-1\right) \\
& I_{g s}=I_{S} \times\left(e^{\frac{q V_{g s}}{k T}}-1\right)
\end{aligned}
$$

Where:

- I_{S} is the saturation current. If you select Specify using equation parameters directly for the Parameterization parameter, I_{S} is the Saturation current parameter value. Otherwise, the block calculates I_{S} from the datasheet parameters you specify.
- q is the elementary charge on an electron.
- k is the Boltzmann constant.

N-Channel JFET

- T is the diode temperature. The value comes from the Measurement temperature parameter.

The block models gate junction capacitance as a fixed gate-drain capacitance $C_{G D}$ and a fixed gate-source capacitance $C_{G S}$. If you select Specify using equation parameters directly for the Parameterization parameter, you specify these values directly using the Gate-drain junction capacitance and Gate-source junction capacitance parameters. Otherwise, the block derives them from the Input capacitance Ciss and Reverse transfer capacitance Crss parameter values. The two parameterizations are related as follows:

- $C_{G D}=C r s s$
- $C_{G S}=$ Ciss - Crss
Basic
Assumptions
and
Limitations

The model is based on the following assumptions:

- This block does not allow you to specify initial conditions on the junction capacitances. If you select the Start simulation from steady state option in the Solver Configuration block, the block solves the initial voltages to be consistent with the calculated steady state. Otherwise, voltages are zero at the start of the simulation.
- This block does not model temperature-dependent effects. SimElectronics simulates the block at the temperature at which the component behavior was measured, as specified by the Measurement temperature parameter value.
- You may need to use nonzero ohmic resistance and junction capacitance values to prevent numerical simulation issues, but the simulation may run faster with these values set to zero.

N-Channel JFET

Dialog Box and Parameters

Main Tab

Block Parameters: N-Channel JFET X
N-Channel JFET
This block represents an N -Channel JFET. The drain current Id for positive V ds (normal operation) is given by:
$\mathrm{Id}=0 \mathrm{if} \mathrm{Vgs}-\mathrm{V} / \mathrm{t} 0<0$ (off)
$I d s=B \times d s^{x}\left[2^{x}(V g s \cdot V(0) \cdot V d s]^{x}\left(1+L^{x} / d s\right)\right.$ if $\left.0<V d s<V g s \cdot V t 0\right]$ (linear region)
Ids $=B^{*}(V g s \cdot V(0))^{\wedge} 2^{x}\left(1+L^{\times} V d s\right)$ if $0<V g s \cdot V t 0<V d s$ (saturated region)
where B is the Transconductance parameter, V 0 is the Threshold voltage, L is the Channel-length modulation, $\mathrm{V} g$ is the gate-source voltage and Vd s is the drain-source voltage.

Parameterization

Select one of the following methods for block parameterization:

- Specify from a datasheet - Provide parameters that the block converts to equations that describe the transistor. This is the default method.
- Specify using equation parameters directly - Provide equation parameters $V_{t o}, \beta, \lambda$, and I_{S}.

Gate reverse current I_gss

The reverse current that flows in the diode when the drain and source are short-circuited and a large negative gate-source voltage is applied. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is -1 nA .

Saturated drain current I_dss

The current that flows when a large positive drain-source voltage is applied for a specified gate-source voltage. For a depletion-mode device, this gate-source voltage may be zero, in which case $I_{d s s}$ may be referred to as the zero-gate voltage drain current. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is 3 mA .

I_dss measurement point [V_gs V_ds]

A vector of the values of $V_{g s}$ and $V_{d s}$ at which $I_{d s s}$ is measured. Normally $V_{g s}$ is zero. $V_{d s}$ should be greater than zero. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is [015] V.

Small-signal parameters [g_fs g_os]

A vector of the values of $g_{f s}$ and $g_{o s} . g_{f s}$ is the forward transfer conductance, i.e. the conductance for a fixed drain-source voltage. $g_{o s}$ is the output conductance, i.e. the conductance for a fixed gate-source voltage. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is [$3 \mathrm{e}+0310$] uS.

Small-signal measurement point [V_gs V_ds]

A vector of the values of $V_{g s}$ and $V_{d s}$ at which $g_{f s}$ and $g_{o s}$ are measured. $V_{d s}$ should be greater than zero. For depletion-mode devices, $V_{g s}$ is typically zero. This parameter is only
visible when you select Specify from a datasheet for the Parameterization parameter. The default value is [$\left.0 \begin{array}{ll}15 &]\end{array}\right]$ V.

Transconductance parameter

The derivative of drain current with respect to gate voltage. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter. The default value is $1 \mathrm{e}-04 \mathrm{~A} / \mathrm{V}^{2}$.

Saturation current
The magnitude of the current that the ideal diode equation approaches asymptotically for very large reverse bias levels. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter. The default value is $1 \mathrm{e}-14 \mathrm{~A}$.

Measurement temperature

The temperature for which the datasheet parameters are quoted. It is also the temperature at which the device is simulated. The default value is 25 C .

Threshold voltage

The gate-source voltage above which the transistor produces a nonzero drain current. For an enhancement device, Vt0 should be positive. For a depletion mode device, Vt0 should be negative. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter. The default value is -2 V .

Channel-length modulation

The channel-length modulation. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter. The default value is $01 / \mathrm{V}$.

N-Channel JFET

Ohmic Resistance Tab

```
Gi,Block Parameters: N-Channel JFET
N-Channel JFET
This block represents an N-Channel JFET. The drain current Id for positive Vds (normal operation) is given by:
Id = 0 if Vgs-VtO < 0 (off)
Ids = B*Vds*[2*(Vgs - Vt0) - Vds ]*(1+L*Vds) if 0<Vds < Vgs - Vt0] (linear region)
Ids = B*(Vgs - Vt0)^2*(1+L*Vds) if 0< Vgs - Vt0 < Vds (saturated region)
where B is the Transconductance parameter, Vt0 is the Threshold voltage, L is the Channel-length
modulation, Vgs is the gate-source voltage and Vds is the drain-source voltage.
```

Parameters
Main Ohmic Resistance Junction Capacitance

Source ohmic resistance:	0.1	Ohm	\checkmark
Drain ohmic resistance:	0.1	Ohm	\checkmark

Source ohmic resistance

The transistor source resistance. The default value is 0.1Ω. The value must be greater than or equal to 0 .

N-Channel JFET

Drain ohmic resistance

The transistor drain resistance. The default value is 0.1Ω. The value must be greater than or equal to 0 .

Junction Capacitance Tab

Parameterization

Select one of the following methods for block parameterization:

- Specify from a datasheet - Provide parameters that the block converts to junction capacitance values. This is the default method.
- Specify using equation parameters directly - Provide junction capacitance parameters directly.

Input capacitance Ciss

The gate-source capacitance with the drain shorted to the source. This parameter is only visible when you select Specify from a datasheet for the Model junction capacitance parameter. The default value is 4.5 pF .

Reverse transfer capacitance Crss

The drain-gate capacitance with the source connected to ground. This parameter is only visible when you select Specify from a datasheet for the Model junction capacitance parameter. The default value is 1.5 pF .

Gate-source junction capacitance

The value of the capacitance placed between the gate and the source. This parameter is only visible when you select Specify using equation parameters directly for the Model junction capacitance parameter. The default value is 3 pF .

Gate-drain junction capacitance

The value of the capacitance placed between the gate and the drain. This parameter is only visible when you select Specify using equation parameters directly for the Model junction capacitance parameter. The default value is 1.5 pF .

Ports The block has the following ports:
G
Electrical conserving port associated with the transistor gate terminal.

D
Electrical conserving port associated with the transistor drain terminal.

S
Electrical conserving port associated with the transistor source terminal.

[^2]
Purpose

Model N-Channel MOSFET using Shichman-Hodges equation
Library
Description
Semiconductor Devices
The N-Channel MOSFET block uses the Shichman and Hodges equations [1] for an insulated-gate field-effect transistor to represent an N-Channel MOSFET.

The drain-source current, $I_{D S}$, depends on the region of operation:

- In the off region $\left(V_{G S}<V_{t h}\right)$ the drain-source current is:

$$
I_{D S}=0
$$

- In the linear region $\left(0<V_{D S}<V_{G S}-V_{t h}\right)$ the drain-source current is:

$$
I_{D S}=K\left(\left(V_{G S}-V_{t h}\right) V_{D S}-V_{D S}{ }^{2} / 2\right)
$$

- In the saturated region $\left(0<V_{G S}-V_{t h}<V_{D S}\right)$ the drain-source current is:

$$
I_{D S}=(K / 2)\left(V_{G S}-V_{t h}\right)^{2}
$$

In the preceding equations:

- K is the transistor gain.
- $V_{D S}$ is the positive drain-source voltage.
- $V_{G S}$ is the gate-source voltage.
- $V_{t h}$ is the threshold voltage.

The block models gate junction capacitance as a fixed gate-drain capacitance $C_{G D}$ and a fixed gate-source capacitance $C_{G S}$. If you select Specify using equation parameters directly for the

Parameterization parameter in the Junction Capacitance tab, you specify these values directly using the Gate-drain junction capacitance and Gate-source junction capacitance parameters. Otherwise, the block derives them from the Input capacitance Ciss and Reverse transfer capacitance Crss parameter values. The two parameterizations are related as follows:

- $C_{G D}=C r s s$
- $C_{G S}=$ Ciss - Crss

Dialog Box and Parameters

Main Tab

Parameterization

Select one of the following methods for block parameterization:

- Specify from a datasheet - Provide the drain-source on resistance and the corresponding drain current and gate-source voltage. The block calculates the transistor gain for the

Shichman and Hodges equations from this information. This is the default method.

- Specify using equation parameters directly - Provide the transistor gain.

Drain-source on resistance, R_DS(on)

The ratio of the drain-source voltage to the drain current for specified values of drain current and gate-source voltage. $R_{D S}$ (on) should have a positive value. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is 0.025Ω.

Drain current, Ids, for R_DS(on)

The drain current the block uses to calculate the value of the drain-source resistance. $I_{D S}$ should have a positive value. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is 6 A .

Gate-source voltage, Vgs, for R_DS(on)

The gate-source voltage the block uses to calculate the value of the drain-source resistance. $V_{G S}$ should have a positive value. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is 10 V .

Gain K

Positive constant gain coefficient for the Shichman and Hodges equations. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter. The default value is $5 \mathrm{~A} / \mathrm{V}^{2}$.

Gate-source threshold voltage Vth

Gate-source threshold voltage $V_{t h}$ in the Shichman and Hodges equations. For an enhancement device, $V_{t h}$ should be positive. For a depletion mode device, $V_{t h}$ should be negative. The default value is 1.7 V .

Ohmic Resistance Tab

Source ohmic resistance

The transistor source resistance. The default value is 0.001Ω. The value must be greater than or equal to 0 .

Drain ohmic resistance

The transistor drain resistance. The default value is 0.001Ω. The value must be greater than or equal to 0 .

Junction Capacitance Tab

Parameterization

Select one of the following methods for capacitance parameterization:

- Specify from a datasheet - Provide parameters that the block converts to junction capacitance values. This is the default method.
- Specify using equation parameters directly - Provide junction capacitance parameters directly.

Input capacitance Ciss

The gate-source capacitance with the drain shorted to the source. This parameter is only visible when you select Specify from a
datasheet for the Parameterization parameter. The default value is 350 pF .

Reverse transfer capacitance Crss

The drain-gate capacitance with the source connected to ground. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is 80 pF .

Gate-source junction capacitance

The value of the capacitance placed between the gate and the source. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter. The default value is 270 pF .

Gate-drain junction capacitance

The value of the capacitance placed between the gate and the drain. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter. The default value is 80 pF .

Ports The block has the following ports:

G
Electrical conserving port associated with the transistor gate terminal.

D
Electrical conserving port associated with the transistor drain terminal.

S
Electrical conserving port associated with the transistor source terminal.

References

[1] H. Shichman and D. A. Hodges. "Modeling and simulation of insulated-gate field-effect transistor switching circuits." IEEE J. Solid State Circuits, SC-3, 1968.

See Also P-Channel MOSFET

Negative Supply Rail

Purpose Model ideal negative supply rail
 Library
 Sources

Description

Dialog Box and Parameters

The Negative Supply Rail block represents an ideal negative supply rail. Use this block instead of the Simscape DC Voltage Source block to define the output voltage relative to the Simscape Electrical Reference block that must appear in each model.

Note Do not attach more than one Negative Supply Rail block to any connected line.

Constant voltage

The voltage at the output port relative to the Electrical Reference block ground port. The value must be less than zero. The default value is -1 V .

The block has the following ports:

Negative Supply Rail

Negative electrical voltage.

See Also
Simscape DC Voltage Source, Positive Supply Rail

NPN Bipolar Transistor

Purpose

Library

Description

Model NPN bipolar transistor using enhanced Ebers-Moll equations
Semiconductor Devices
The NPN Bipolar Transistor block uses a variant of the Ebers-Moll equations to represent an NPN bipolar transistor. The Ebers-Moll equations are based on two exponential diodes plus two current-controlled current sources. The NPN Bipolar Transistor block provides the following enhancements to that model:

- Early voltage effect
- Optional base, collector, and emitter resistances.
- Optional fixed base-emitter and base-collector capacitances.

The collector and base currents are:

$$
\begin{aligned}
& I_{C}=I_{S}\left[\left(e^{q V_{B E} /(k T)}-e^{q V_{B C} /(k T)}\right)\left(1-\frac{V_{B C}}{V_{A}}\right)-\frac{1}{\beta_{R}}\left(e^{q V_{B C} /(k T)}-1\right)\right] \\
& I_{B}=I_{S}\left[\frac{1}{\beta_{F}}\left(e^{q V_{B E} /(k T)}-1\right)+\frac{1}{\beta_{R}}\left(e^{q V_{B C} /(k T)}-1\right)\right]
\end{aligned}
$$

Where:

- I_{B} and I_{C} are base and collector currents, defined as positive into the device.
- $V_{b e}$ is the base-emitter voltage and $V_{b c}$ is the base-collector voltage.
- β_{F} is the ideal maximum current gain BF
- β_{R} is the ideal maximum current gain BR
- V_{A} is the forward Early voltage VAF
- q is the elementary charge on an electron (1.602176e-19 Coulombs).
- k is the Boltzmann constant (1.3806503e-23 J/K).
- T is the transistor temperature, as defined by the Measurement temperature parameter value.

You can specify the transistor behavior using datasheet parameters that the block uses to calculate the parameters for these equations, or you can specify the equation parameters directly.

If $q V_{B C} /(k T)>40$ or $q V_{B E} /(k T)>40$, the corresponding exponential terms in the equations are replaced with $\left(q V_{B C} /(k T)-39\right) e^{40}$ and $\left(q V_{B E} /(k T)-39\right) e^{40}$, respectively. This helps prevent numerical issues associated with the steep gradient of the exponential function e^{x} at large
values of x. Similarly, if $q V_{B C} /(k T)<-39$ or $q V_{B E} /(k T)<-39$ then the corresponding exponential terms in the equations are replaced with
$\left(q V_{B C} /(k T)+40\right) e^{-39}$ and $\left(q V_{B E} /(k T)+40\right) e^{-39}$, respectively.
Optionally, you can specify parasitic fixed capacitances across the base-emitter and base-collector junctions. You also have the option to specify base, collector, and emitter connection resistances.

Basic Assumptions and Limitations

The NPN Bipolar Transistor model has the following limitations:

- This block does not model temperature-dependent effects. SimElectronics simulates the block at the temperature at which the component behavior was measured, as specified by the Measurement temperature parameter value.
- You may need to use nonzero ohmic resistance and junction capacitance values to prevent numerical simulation issues, but the simulation may run faster with these values set to zero.

NPN Bipolar Transistor

Dialog Box and Parameters

Main TabX
NPN Bipolar Transistor
This block represents an NPN transistor modeled using a variant of the Ebers-Moll equations. The Ebers-Moll equations are based on two exponential diodes plus two current-controlled current sources. In addition, this block adds the Early voltage effect, and gives the option to include base, emitter and emitter resistances plus fixed base-emitter and base-collector capacitances. For full details of the equations, consult the documentation. The equation parameters can either be specified directly, or are derived from standard datasheet parameters.

Parameters

Main	Ohmic Resistance	Junction Capacitance

Parameterization

Select one of the following methods for block parameterization:

- Specify from a datasheet - Provide parameters that the block converts to equations that describe the transistor. The block calculates the forward Early voltage VAF as $I c / h _o e$, where $I c$ is the Collector current at which h-parameters are defined parameter value, and $h_{-} o e$ is the Output
admittance $\mathbf{h} _$oe parameter value [2]. The block sets $B F$ to the small-signal Forward current transfer ratio $\mathbf{h} _$fe value. The block calculates the saturation current $I S$ from the specified Voltage Vbe value and the corresponding Current Ib for voltage Vbe value when $I c$ is zero. This is the default method.
- Specify using equation parameters directly - Provide equation parameters $I S, B F$, and $V A F$.

Forward current transfer ratio h_fe

Small-signal current gain. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is 100 .

Output admittance h_oe

Derivative of the collector current with respect to the collector-emitter voltage for a fixed base current. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is $5 \mathrm{e}-051 / \Omega$.

Collector current at which h-parameters are defined

The h-parameters vary with operating point, and are defined for this value of the collector current. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is 1 mA .

Voltage Vbe

Base-emitter voltage when the collector current is zero and the base current is $I b$. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is 0.55 V .

Current Ib for voltage Vbe

Base current when the base-emitter voltage is Vbe and the collector current is zero. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is 0.5 mA .

NPN Bipolar Transistor

Forward current transfer ratio BF

Ideal maximum forward current gain. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter. The default value is 100 .

Saturation current IS

Transistor saturation current. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter. The default value is $1 \mathrm{e}-14 \mathrm{~A}$.

Forward Early voltage VAF

In the standard Ebers-Moll equations, the gradient of the Ic versus Vce curve is zero in the normal active region. The additional forward Early voltage term increases this gradient. The intercept on the $V c e$-axis is equal to $-V A F$ when the linear region is extrapolated. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter. The default value is 200 V.

Reverse current transfer ratio BR

Ideal maximum reverse current gain. This value is often not quoted in manufacturer datasheets, because it is not significant when the transistor is biased to operate in the normal active region. When the value is not known and the transistor is not to be operated on the inverse region, use the default value of 1 .

Measurement temperature

Temperature at which $V b e$ and $I b$ or $I S$ are measured. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is $25^{\circ} \mathrm{C}$.

NPN Bipolar Transistor

Ohmic Resistance Tab

Collector resistance RC

Resistance at the collector. The default value is 0.1Ω.

Emitter resistance RE

Resistance at the emitter. The default value is 0.1Ω.

Zero bias base resistance RB

Resistance at the base at zero bias. The default value is 0.1Ω.

NPN Bipolar Transistor

Junction Capacitance Tab

Base-collector capacitance

Parasitic capacitance across the base-collector junction. The default value is 5 pF .

Base-emitter capacitance

Parasitic capacitance across the base-emitter junction. The default value is 5 pF .

Ports The block has the following ports:

B
Electrical conserving port associated with the transistor base terminal.

C
Electrical conserving port associated with the transistor collector terminal.

E
Electrical conserving port associated with the transistor emitter terminal.

Examples

References

See the NPN Bipolar Transistor Characteristics demo.
[1] G. Massobrio and P. Antognetti. Semiconductor Device Modeling with SPICE. 2nd Edition, McGraw-Hill, 1993.
[2] H. Ahmed and P.J. Spreadbury. Analogue and digital electronics for engineers. 2nd Edition, Cambridge University Press, 1984.

See Also Diode, PNP Bipolar Transistor

Optocoupler

Purpose
 Library
 Description

Model optocoupler as LED, current sensor, and controlled current source
Semiconductor Devices
This block represents an optocoupler using a model that consists of the following components:

- An exponential light-emitting diode in series with a current sensor on the input side
- A controlled current source on the output side

The output-side current flows from the collector junction to the emitter junction. It has a value of $C T R^{*} I_{d}$, where $C T R$ is the Current transfer ratio parameter value and I_{d} is the diode current.
Use the Optocoupler block to interface two electrical circuits without making a direct electrical connection. A common reason for doing this is that the two circuits work at very different voltage levels.

Note Each electrical circuit must have its own Electrical Reference block.

If the output circuit is a phototransistor, typical values for the Current transfer ratio parameter are 0.1 to 0.5 . If the output stage consists of a Darlington pair, the parameter value can be much higher than this. The Current transfer ratio value also varies with the light-emitting diode current, but this effect is not modeled by the Photodiode block.

Some manufacturers provide a maximum data rate for optocouplers. In practice, the maximum data rate depends on the following factors:

- The capacitance of the photodiode and the type of the driving circuit
- The construction of the phototransistor and its associated capacitance

Optocoupler

Basic Assumptions and Limitations

The Optocoupler block only lets you define the capacitance on the light-emitting diode. You can use the Junction capacitance parameter to add your own capacitance across the collector and emitter connections.

The Optocoupler block has the following limitations:

- The output side is modeled as a controlled current source. As such, it only correctly approximates a bipolar transistor operating in its normal active region. To create a more detailed model, connect the Optocoupler output directly to the base of an NPN Bipolar Transistor block, and set the parameters to maintain a correct overall value for the current transfer ratio. If you need to connect optocouplers in series, use this approach to avoid the invalid topology of two current sources in series.
- This block does not model temperature-dependent effects. SimElectronics simulates the block at the temperature at which the component behavior was measured, as specified by the Measurement temperature parameter value.
- You may need to use nonzero ohmic resistance and junction capacitance values to prevent numerical simulation issues, but the simulation may run faster with these values set to zero.

Optocoupler

Dialog Box and Parameters

Main Tab

Current transfer ratio

The output current flowing from the transistor collector to emitter junctions is equal to the product of the current transfer ratio and the current flowing the light-emitting diode. The default value is 0.2 .

Diode parameterization

Select one of the following methods for model parameterization:

- Use I-V curve data points - Specify measured data at two points on the diode I-V curve. This is the default method.
- Use parameters IS and N - Specify saturation current and emission coefficient.

Optocoupler

Currents [I1 I2]

A vector of the current values at the two points on the diode I-V curve that the block uses to calculate $I S$ and N. This parameter is only visible when you select Use I-V curve data points for the Diode parameterization parameter. The default value is [0.0010 .015] A.

Voltages [V1 V2]

A vector of the voltage values at the two points on the diode I-V curve that the block uses to calculate $I S$ and N. This parameter is only visible when you select Use I-V curve data points for the Diode parameterization parameter. The default value is [0.91 .05] V.

Saturation current IS

The magnitude of the current that the ideal diode equation approaches asymptotically for very large reverse bias levels. This parameter is only visible when you select Use parameters IS and N for the Diode parameterization parameter. The default value is $1 \mathrm{e}-10 \mathrm{~A}$.

Measurement temperature

The temperature at which IS or the I-V curve was measured. The default value is $25^{\circ} \mathrm{C}$.

Emission coefficient N

The diode emission coefficient or ideality factor. This parameter is only visible when you select Use parameters IS and N for the Diode parameterization parameter. The default value is 2 .

Optocoupler

Ohmic Resistance Tab

Ohmic resistance RS

The series diode connection resistance. The default value is 0.1Ω.

Optocoupler

Junction Capacitance Tab

Junction capacitance

Select one of the following options for modeling the diode junction capacitance:

- Fixed or zero junction capacitance - Model the junction capacitance as a fixed value.
- Use C-V curve data points - Specify measured data at three points on the diode C-V curve.
- Use parameters CJO, VJ, M \& FC - Specify zero-bias junction capacitance, junction potential, grading coefficient, and forward-bias depletion capacitance coefficient.

Optocoupler

Zero-bias junction capacitance CJ0

The value of the capacitance placed in parallel with the exponential diode term. This parameter is only visible when you select Fixed or zero junction capacitance or Use parameters CJO, VJ, M \& FC for the Junction capacitance parameter. The default value is 5 pF .

Junction potential VJ

The junction potential. This parameter is only visible when you select Use parameters CJO, VJ, M \& FC for the Junction capacitance parameter. The default value is 1 V .

Grading coefficient M

The coefficient that quantifies the grading of the junction. This parameter is only visible when you select Use parameters CJO, VJ, M \& FC for the Junction capacitance parameter. The default value is 0.5 .

Reverse bias voltages [VR1 VR2 VR3]

A vector of the reverse bias voltage values at the three points on the diode C-V curve that the block uses to calculate $C J O, V J$, and M. This parameter is only visible when you select Use C-V curve data points for the Junction capacitance parameter. The default value is [$\left.\begin{array}{llll}0.1 & 10 & 100\end{array}\right]$ V.
Corresponding capacitances [C1 C2 C3]
A vector of the capacitance values at the three points on the diode C-V curve that the block uses to calculate CJO, VJ, and M. This parameter is only visible when you select Use C-V curve data points for the Junction capacitance parameter. The default value is [$\left.\begin{array}{lll}3.5 & 1 & 0.4\end{array}\right] \mathrm{pF}$.

Capacitance coefficient FC

Fitting coefficient that quantifies the decrease of the depletion capacitance with applied voltage. This parameter is only visible when you select Use C-V curve data points or Use parameters CJO, VJ, M \& FC for the Junction capacitance parameter. The default value is 0.5 .

Ports The block has the following ports:
$+$
Electrical conserving port associated with the diode positive terminal.

Electrical conserving port associated with the diode negative terminal.

C
Electrical conserving port associated with the transistor collector terminal.

E
Electrical conserving port associated with the transistor emitter terminal.

References [1] G. Massobrio and P. Antognetti. Semiconductor Device Modeling with SPICE. 2nd Edition, McGraw-Hill, 1993.

[2] H. Ahmed and P.J. Spreadbury. Analogue and digital electronics for engineers. 2nd Edition, Cambridge University Press, 1984.

See Also
Diode, NPN Bipolar Transistor, Simscape Controlled Current Source

Purpose
Model P-Channel JFET
Library
Description

Semiconductor Devices

The P-Channel JFET block uses the Shichman and Hodges equations to represent a P-Channel JFET using a model with the following structure:

G is the transistor gate, D is the transistor drain and S is the transistor source. The drain-source current, $I_{d s}$, depends on the region of operation and whether the transistor is operating in normal or inverse mode.

- In normal mode ($-V_{d s} \geq 0$), the block provides the following relationship between the drain-source current $I_{d s}$ and the drain-source voltage $V_{d s}$.

P-Channel JFET

Region	Applicable Range of $\boldsymbol{V}_{\mathbf{g s}}$ and $\boldsymbol{V}_{g d}$ Values	Corresponding I_{ds} Equation
Off	$-V_{g s}<-V_{t 0}$	$I_{d s}=0$
Linear	$0<-V_{d s}<-V_{g s}+$ $V_{t 0}$	$I_{d s}=\beta V_{d s}\left(2\left(-V_{g s}+V_{t 0}\right)+V_{d s}\right)\left(1-\lambda V_{d s}\right)$
Saturated	$0<-V_{g s}+V_{t 0}<$ $-V_{d s}$	$I_{d s}=-\beta\left(-V_{g s}+V_{t 0}\right)^{2}\left(1-\lambda V_{d s}\right)$

- In inverse mode ($V_{d s}<0$), the block provides the following relationship between the drain-source current $I_{d s}$ and the drain-source voltage $V_{d s}$.

Region	Applicable Range of $\boldsymbol{V}_{\text {gd }}$ and $\boldsymbol{V}_{d s}$ Values	Corresponding $I_{d s}$ Equation
Off	$-V_{g d}<-V_{t o}$	$I_{d s}=0$
Linear	$0<V_{d s}<-V_{g d}+V_{t 0}$	$I_{d s}=\beta V_{d s}\left(2\left(-V_{g d}+V_{t 0}\right)-V_{d s}\right)\left(1+\lambda V_{d s}\right)$
Saturated	$0<-V_{g d}+V_{t 0}<V_{d s}$	$I_{d s}=\beta\left(-V_{g d}+V_{t 0}\right)^{2}\left(1+\lambda V_{d s}\right)$

In the preceding equations:

- $V_{g s}$ is the gate-source voltage.
- $V_{g d}$ is the gate-drain voltage.
- $V_{t 0}$ is the threshold voltage. If you select Specify using equation parameters directly for the Parameterization parameter, $V_{t o}$ is the Threshold voltage parameter value. Otherwise, the block calculates $V_{t o}$ from the datasheet parameters you specify.
- β is the transconductance parameter. If you select Specify using equation parameters directly for the Parameterization parameter, β is the Transconductance parameter parameter value. Otherwise, the block calculates β from the datasheet parameters you specify.
- λ is the channel-length modulation parameter. If you select Specify using equation parameters directly for the Parameterization parameter, λ is the Channel-length modulation parameter value. Otherwise, the block calculates λ from the datasheet parameters you specify.

The currents in each of the diodes satisfy the exponential diode equation

$$
\begin{aligned}
& I_{g d}=I_{S} \times\left(e^{\frac{q V_{g d}}{k T}}-1\right) \\
& I_{g s}=I_{S} \times\left(e^{\frac{q V_{g s}}{k T}}-1\right)
\end{aligned}
$$

Where:

- I_{S} is the saturation current. If you select Specify using equation parameters directly for the Parameterization parameter, I_{S} is the Saturation current parameter value. Otherwise, the block calculates I_{S} from the datasheet parameters you specify.
- q is the elementary charge on an electron.
- k is the Boltzmann constant.
- T is the diode temperature. The value comes from the Measurement temperature parameter.

The block models gate junction capacitance as a fixed gate-drain capacitance $C_{G D}$ and a fixed gate-source capacitance $C_{G S}$. If you select Specify using equation parameters directly for the Parameterization parameter, you specify these values directly using the Gate-drain junction capacitance and Gate-source junction capacitance parameters. Otherwise, the block derives them from the Input capacitance Ciss and Reverse transfer capacitance Crss parameter values. The two parameterizations are related as follows:

- $C_{G D}=C r s s$
- $C_{G S}=$ Ciss $-C r s s$

Basic Assumptions and Limitations

The model is based on the following assumptions:

- This block does not allow you to specify initial conditions on the junction capacitances. If you select the Start simulation from steady state option in the Solver Configuration block, the block solves the initial voltages to be consistent with the calculated steady state. Otherwise, voltages are zero at the start of the simulation.
- This block does not model temperature-dependent effects. SimElectronics simulates the block at the temperature at which the component behavior was measured, as specified by the Measurement temperature parameter value.
- You may need to use nonzero ohmic resistance and junction capacitance values to prevent numerical simulation issues, but the simulation may run faster with these values set to zero.

P－Channel JFET

Dialog Box and Parameters

Main Tab

```
\⿴囗十木\(\times\)
P-Channel JFET
    This block represents a P-Channel JFET. The drain current Id for negative Vds (normal operation) is given by:
    Id=0 if }\cdotV/\textrm{gs}\cdot//0/0<0\mathrm{ (off)
```



```
    where B is the Transconductance parameter, Vt0 is the Threshold voltage, L is the Channel-length
    modulation, Vgs is the gate-source voltage and Vds is the drain-source voltage.
```

 Parameters
 Main | Ohmic Resistance | Junction Capacitance |

Parameterization：	Specify from a datasheet		\square
Gate reverse current I＿gss：	5	nA	\checkmark
Saturated drain current I＿dss：	－3	mA	\checkmark
I＿dss measurement point［V＿gs V＿ds］：	［ 0－15］	V	\checkmark
Small－signal parameters［g＿fs g＿os］：	［ 2．5e＋03 75］	US	\checkmark
Small－signal measurement point［V＿gs V＿ds）：	［ 0－15］	V	\square
Measurement temperature：	25	C	\square

Parameterization

Select one of the following methods for block parameterization：
－Specify from a datasheet－Provide parameters that the block converts to equations that describe the transistor．This is the default method．

- Specify using equation parameters directly - Provide equation parameters $V_{t o}, \beta, \lambda$, and I_{S}.

Gate reverse current I_gss

The reverse current that flows in the diode when the drain and source are short-circuited and a large positive gate-source voltage is applied. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is 5 nA .

Saturated drain current I_dss

The current that flows when a large negative drain-source voltage is applied for a specified gate-source voltage. For a depletion-mode device, this gate-source voltage may be zero, in which case $I_{d s s}$ may be referred to as the zero-gate voltage drain current. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is -3 mA .

I_dss measurement point [V_gs V_ds]

A vector of the values of $V_{g s}$ and $V_{d s}$ at which $I_{d s s}$ is measured. Normally $V_{g s}$ is zero. $V_{d s}$ should be less than zero. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is [0 -15] V.

Small-signal parameters [g_fs g_os]

A vector of the values of $g_{f s}$ and $g_{o s} . g_{f s}$ is the forward transfer conductance, i.e. the conductance for a fixed drain-source voltage. $g_{o s}$ is the output conductance, i.e. the conductance for a fixed gate-source voltage. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is [$2.5 \mathrm{e}+0375$] uS.

Small-signal measurement point [V_gs V_ds]

A vector of the values of $V_{g s}$ and $V_{d s}$ at which $g_{f s}$ and $g_{o s}$ are measured. $V_{d s}$ should be less than zero. For depletion-mode devices, $V_{g s}$ is typically zero. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is [0 -15] V.

Transconductance parameter

The derivative of drain current with respect to gate voltage. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter. The default value is $1 \mathrm{e}-04 \mathrm{~A} / \mathrm{V}^{2}$.

Saturation current

The magnitude of the current that the ideal diode equation approaches asymptotically for very large reverse bias levels. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter. The default value is $1 \mathrm{e}-14 \mathrm{~A}$.

Measurement temperature

The temperature for which the datasheet parameters are quoted. It is also the temperature at which the device is simulated. The default value is 25 C .

Threshold voltage

The gate-source voltage above which the transistor produces a nonzero drain current. For an enhancement device, Vt0 should be negative. For a depletion mode device, Vt0 should be positive. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter. The default value is 2 V .

Channel-length modulation

The channel-length modulation. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter. The default value is $01 / \mathrm{V}$.

P-Channel JFET

Ohmic Resistance Tab

Block Parameters: P-Channel JFET
P-Channel JFET
This block represents a P-Channel JFET. The drain current Id for negative Vds (normal operation) is given by:
Id $=0$ if $-\mathrm{Vgs}-\mathrm{Vt} 0<0$ (off)
$I d s=-B^{*} V d s^{*}\left[2^{*}(-V g s-V t 0)+V d s\right]^{*}\left(1-L^{*} V d s\right)$ if $\left.0<-V d s<-V g s-V t 0\right]$ (linear region)
Ids $=-B^{*}(-V g s-V t 0)^{\wedge} 2^{*}\left(1-L^{*} V d s\right)$ if $0<-V g s-V t 0<-V d s$ (saturated region)
where B is the Transconductance parameter, Vto is the Threshold voltage, L is the Channel-length modulation, Vgs is the gate-source voltage and Vds is the drain-source voltage.

Parameters

Main \quad Ohmic Resistance	Junction Capacitance

Source ohmic resistance

The transistor source resistance. The default value is 0.1Ω. The value must be greater than or equal to 0 .

P-Channel JFET

Drain ohmic resistance

The transistor drain resistance. The default value is 0.1Ω. The value must be greater than or equal to 0 .

Junction Capacitance Tab

Parameterization

Select one of the following methods for block parameterization:

- Specify from a datasheet - Provide parameters that the block converts to junction capacitance values. This is the default method.
- Specify using equation parameters directly - Provide junction capacitance parameters directly.

Input capacitance Ciss

The gate-source capacitance with the drain shorted to the source. This parameter is only visible when you select Specify from a datasheet for the Model junction capacitance parameter. The default value is 4.5 pF .

Reverse transfer capacitance Crss

The drain-gate capacitance with the source connected to ground. This parameter is only visible when you select Specify from a datasheet for the Model junction capacitance parameter. The default value is 1.5 pF .

Gate-source junction capacitance

The value of the capacitance placed between the gate and the source. This parameter is only visible when you select Specify using equation parameters directly for the Model junction capacitance parameter. The default value is 3 pF .

Gate-drain junction capacitance

The value of the capacitance placed between the gate and the drain. This parameter is only visible when you select Specify using equation parameters directly for the Model junction capacitance parameter. The default value is 1.5 pF .

Ports The block has the following ports:

G
Electrical conserving port associated with the transistor gate terminal.

D
Electrical conserving port associated with the transistor drain terminal.

S
Electrical conserving port associated with the transistor source terminal.

[^3]
Purpose

Model P-Channel MOSFET using Shichman-Hodges equation

Library

Description
Semiconductor Devices
The P-Channel MOSFET block uses the Shichman and Hodges equations [1] for an insulated-gate field-effect transistor to represent an P-Channel MOSFET.

The drain-source current, $I_{D S}$, depends on the region of operation:

- In the off region $\left(-V_{G S}<-V_{t h}\right)$ the drain-source current is:

$$
I_{D S}=0
$$

- In the linear region ($0<-V_{D S}<-V_{G S}+V_{t h}$) the drain-source current is:

$$
I_{D S}=-K\left(\left(V_{G S}-V_{t h}\right) V_{D S}-V_{D S}^{2} / 2\right)
$$

- In the saturated region $\left(0<-V_{G S}+V_{t h}<-V_{D S}\right)$ the drain-source current is:

$$
I_{D S}=-(K / 2)\left(V_{G S}-V_{t h}\right)^{2}
$$

In the preceding equations:

- K is the transistor gain.
- $V_{D S}$ is the negative drain-source voltage.
- $V_{G S}$ is the gate-source voltage.
- $V_{t h}$ is the threshold voltage.

The block models gate junction capacitance as a fixed gate-drain capacitance $C_{G D}$ and a fixed gate-source capacitance $C_{G S}$. If you

P-Channel MOSFET

select Specify using equation parameters directly for the Parameterization parameter in the Junction Capacitance tab, you specify these values directly using the Gate-drain junction capacitance and Gate-source junction capacitance parameters. Otherwise, the block derives them from the Input capacitance Ciss and Reverse transfer capacitance Crss parameter values. The two parameterizations are related as follows:

- $C_{G D}=$ Crss
- $C_{G S}=$ Ciss - Crss

P-Channel MOSFET

Dialog Box and Parameters

Main Tab

Parameterization

Select one of the following methods for block parameterization:

- Specify from a datasheet - Provide the drain-source on resistance and the corresponding drain current and gate-source voltage. The block calculates the transistor gain for the

P-Channel MOSFET

Shichman and Hodges equations from this information. This is the default method.

- Specify using equation parameters directly - Provide the transistor gain.

Drain-source on resistance, R_DS(on)

The ratio of the drain-source voltage to the drain current for specified values of drain current and gate-source voltage. $R_{D S}$ (on) should have a positive value. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is 0.167Ω.

Drain current, Ids, for R_DS(on)

The drain current the block uses to calculate the value of the drain-source resistance. $I_{D S}$ should have a negative value. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is -2.5 A.

Gate-source voltage, Vgs, for R_DS(on)

The gate-source voltage the block uses to calculate the value of the drain-source resistance. $V_{G S}$ should have a negative value. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is -4.5 V .

Gain K

Positive constant gain coefficient for the Shichman and Hodges equations. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter. The default value is $2 \mathrm{~A} / \mathrm{V}^{2}$.

Gate-source threshold voltage Vth

Gate-source threshold voltage $V_{t h}$ in the Shichman and Hodges equations. For an enhancement device, $V_{t h}$ should be negative. For a depletion mode device, $V_{t h}$ should be positive. The default value is -1.4 V .

P-Channel MOSFET

Ohmic Resistance Tab

Source ohmic resistance

The transistor source resistance. The default value is 0.001Ω. The value must be greater than or equal to 0 .

Drain ohmic resistance

The transistor drain resistance. The default value is 0.001Ω. The value must be greater than or equal to 0 .

P-Channel MOSFET

Junction Capacitance Tab

Parameterization

Select one of the following methods for capacitance parameterization:

- Specify from a datasheet - Provide parameters that the block converts to junction capacitance values. This is the default method.
- Specify using equation parameters directly - Provide junction capacitance parameters directly.

Input capacitance Ciss

The gate-source capacitance with the drain shorted to the source. This parameter is only visible when you select Specify from a

P-Channel MOSFET

datasheet for the Parameterization parameter. The default value is 270 pF .

Reverse transfer capacitance Crss

The drain-gate capacitance with the source connected to ground. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is 45 pF .

Gate-source junction capacitance

The value of the capacitance placed between the gate and the source. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter. The default value is 225 pF .

Gate-drain junction capacitance

The value of the capacitance placed between the gate and the drain. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter. The default value is 45 pF .

Ports The block has the following ports:

G
Electrical conserving port associated with the transistor gate terminal.

D
Electrical conserving port associated with the transistor drain terminal.

S
Electrical conserving port associated with the transistor source terminal.

[^4]
P-Channel MOSFET

See Also N-Channel MOSFET

Purpose

Model polynomial current-controlled current source

Library

Description

SPICE-Compatible Components/Sources
The PCCCS (Polynomial Current-Controlled Current Source) block represents a current source whose output current value is a polynomial function of the current through the input ports. The following equations describe the current through the source as a function of time:

- If you specify an n-element vector of polynomial coefficients for the Polynomial coefficients parameter:

$$
I_{\text {out }}=p(0)+p(1) * I_{\text {in }}+\ldots+p(n-1) * I_{i n}^{n-1}+p(n) * I_{\text {in }}^{n}
$$

- If you specify a scalar coefficient for the Polynomial coefficients parameter:

$$
I_{\text {out }}=p^{*} I_{\text {in }}
$$

where:

- $I_{i n}$ is the current through the input ports.
- p is the Polynomial coefficients parameter value.

The block uses a small conductance internally to prevent numerical simulation issues. The conductance connects the output ports of the device and has a conductance GMIN:

- By default, GMIN matches the Minimum conductance GMIN parameter of the SPICE Environment Parameters block, whose default value is $1 \mathrm{e}-12$.
- To change GMIN, add a SPICE Environment Parameters block to your model and set the Minimum conductance GMIN parameter to the desired value.

Dialog
 Box and Parameters

Polynomial coefficients

The polynomial coefficients that relate the input current to the output current, as described in the preceding section. The default value is [$\left.\begin{array}{lll}0 & 1\end{array}\right]$.

Ports

The block has the following ports:
$+$
Positive electrical input voltage.

Negative electrical input voltage.
N+
Positive electrical output voltage.

N -
 Negative electrical output voltage.

See Also , PCCCS2PCCVS, PVCCS, and PVCVS

PCCCS2

Purpose

Library
Description

Model polynomial current-controlled current source with two controlling inputs

SPICE-Compatible Components/Sources
The PCCCS2 (Two-Input Polynomial Current-Controlled Current Source) block represents a current source whose output current value is a polynomial function of the currents through the pairs of controlling input ports. The following equations describes the current through the source as a function of time:

$$
I_{\text {out }}=p_{1}+p_{2} * I_{\text {in } 1}+p_{3} * I_{\text {in } 2}+p_{4} * I_{\text {in } 1}^{2}+p_{5} I_{\text {in } 1} * I_{\text {in } 2}+p_{6} * I_{\text {in } 2}^{2}+\ldots
$$

where:

- $I_{i n 1}$ is the current across the first pair of input ports.
- $I_{\text {in2 }}$ is the current across the second pair of input ports.
- p is the Polynomial coefficients parameter value.

The block uses a small conductance internally to prevent numerical simulation issues. The conductance connects the output ports of the device and has a conductance GMIN:

- By default, GMIN matches the Minimum conductance GMIN parameter of the SPICE Environment Parameters block, whose default value is $1 \mathrm{e}-12$.
- To change GMIN, add a SPICE Environment Parameters block to your model and set the Minimum conductance GMIN parameter to the desired value.

Dialog Box and Parameters

Ports
 The block has the following ports:

$+1$
Positive electrical input voltage of first controlling source.
-1
Negative electrical input voltage of first controlling source.
$+2$
Positive electrical input voltage of second controlling source.
-2
Negative electrical input voltage of second controlling source.
N+
Positive electrical output voltage.
N -
Negative electrical output voltage.
See Also
PCCCS, PCCVS2, PVCCS2, and PVCVS2

PCCVS

Purpose
Library
Description

Model polynomial current-controlled voltage source

SPICE-Compatible Components/Sources

The PCCVS (Polynomial Current-Controlled Voltage Source) block represents a voltage source whose output voltage value is a polynomial function of the current through the input ports. The following equations describe the voltage across the source as a function of time:

- If you specify an n-element vector of polynomial coefficients for the Polynomial coefficients parameter:

$$
V_{\text {out }}=p(0)+p(1) * I_{\text {in }}+\ldots+p(n-1) * I_{\text {in }}^{n-1}+p(n) * I_{\text {in }}^{n}
$$

- If you specify a scalar coefficient for the Polynomial coefficients parameter:

$$
V_{\text {out }}=p^{*} I_{\text {in }}
$$

where:

- $I_{i n}$ is the current through the input ports.
- p is the Polynomial coefficients parameter value.

Dialog Box and Parameters

Block Parameters: PCCYS

X

-PCCVS
The Polynomial Current-Controlled Voltage Source (PCCVS) block generates a voltage waveform, Vout, by evaluating a polynomial function for a single controlling input current, Iin. Iin is the time-dependent current flowing through the input terminals.

If you specify a vector of polynomial coefficients, p, in ascending order, the output is:
Wout $=p(0)+p(1)^{*} \operatorname{Iin}+\ldots+p(n-1)^{*} \operatorname{Iin} \wedge(n-1)+p(n)^{*} \operatorname{Ii} \cap^{\wedge} n$
If you specify a scalar coefficient, p, the block creates a linearly dependent output voltage.

Vout $=p^{*}$ Iin
Parameters
Polynomial coefficients:
[01]

OK
Cancel

 Apply

Polynomial coefficients

The polynomial coefficients that relate the input current to the output voltage, as described in the preceding section. The default value is [$\left.\begin{array}{lll}0 & 1\end{array}\right]$.

Ports The block has the following ports:
$+$
Positive electrical input voltage.

Negative electrical input voltage.
N+
Positive electrical output voltage.
N -
Negative electrical output voltage.

PCCVS

See Also PCCCS, PCCVS2, PVCCS, and PVCVS

Purpose

Library

Description

Model polynomial current-controlled voltage source with two controlling inputs

SPICE-Compatible Components/Sources
The PCCVS2 (Two-Input Polynomial Current-Controlled Voltage Source) block represents a voltage source whose output voltage value is a polynomial function of the currents through the pairs of controlling input ports. The following equations describes the voltage across the source as a function of time:

$$
V_{\text {out }}=p_{1}+p_{2} * I_{\text {in1 } 1}+p_{3} * I_{\text {in } 2}+p_{4} * I_{\text {in } 1}^{2}+p_{5} I_{\text {in } 1} * I_{\text {in } 2}+p_{6} * I_{\text {in } 2}^{2}+\ldots
$$

where:

- $I_{\text {in1 }}$ is the current across the first pair of input ports.
- $I_{i n 2}$ is the current across the second pair of input ports.
- p is the Polynomial coefficients parameter value.

The block uses a small conductance internally to prevent numerical simulation issues. The conductance connects the output ports of the device and has a conductance GMIN:

- By default, GMIN matches the Minimum conductance GMIN parameter of the SPICE Environment Parameters block, whose default value is $1 \mathrm{e}-12$.
- To change GMIN, add a SPICE Environment Parameters block to your model and set the Minimum conductance GMIN parameter to the desired value.

PCCVS2

Dialog Box and Parameters

Ports

The block has the following ports:
$+1$
Positive electrical input voltage of first controlling source.
-1
Negative electrical input voltage of first controlling source.
+2
Positive electrical input voltage of second controlling source.
-2
Negative electrical input voltage of second controlling source.
N+
Positive electrical output voltage.
N-
Negative electrical output voltage.
See Also PCCCS2, PCCVS, PVCCS2, and PVCVS2

Purpose

Library

Description

Model photodiode as parallel controlled current source and exponential diode

Sensors
The Photodiode block represents a photodiode as a controlled current source and an exponential diode connected in parallel. The controlled current source produces a current I_{p} that is proportional to the radiant flux density:

$I_{p}=$ DeviceSensitivity \times RadiantFluxDensity

where:

- DeviceSensitivity is the ratio of the current produced to the incident radiant flux density.
- If you select Specify measured current for given flux density for the Sensitivity parameterization parameter, the block calculates this variable by converting the Measured current parameter value to units of amps and dividing it by the Flux density parameter values.
- If you select Specify current per unit flux density for the Sensitivity parameterization parameter, this variable is defined by the Device sensitivity parameter value.
- RadiantFluxDensity is the incident radiant flux density.

To model dynamic response time, use the Junction capacitance parameter to include the diode junction capacitance in the model.
The exponential diode model provides the following relationship between the diode current I and the diode voltage V :

$$
I=I S \times\left(e^{\frac{q V}{N k T}}-1\right)
$$

Photodiode

where:

- q is the elementary charge on an electron (1.602176e-19 Coulombs).
- k is the Boltzmann constant (1.3806503e-23 J/K).
- N is the emission coefficient.
- IS is the saturation current, which is equal to the Dark current parameter value.
- T is the temperature at which the diode parameters are specified, as defined by the Measurement temperature parameter value.

When $\frac{q V}{N k T}>80$, the block replaces $e^{\frac{q V}{N k T}}$ with $\left(\frac{q V}{N k T}-79\right) e^{80}$, which matches the gradient of the diode current at $q V /(N k T)=80$ and extrapolates linearly. When $\frac{q V}{N k T}<-79$, the block replaces $e^{\frac{q V}{N k T}}$ with $\left(\frac{q V}{N k F}+80\right) e^{-79}$, which also matches the gradient and extrapolates lineafly. Typical electrical circuits do not reach these extreme values. The block provides this linear extrapolation to help convergence when solving for the constraints during simulation.

When you select Use dark current and N for the Diode parameterization parameter, you specify the diode in terms of the Dark current and Emission coefficient N parameters. When you select Use dark current plus a forward bias I-V data point for the Diode parameterization parameter, you specify the Dark current parameter and a voltage and current measurement point on the diode I-V curve. The block calculates N from these values as follows:

$$
N=V_{F} /\left(V_{t} \log \left(I_{F} / I S+1\right)\right)
$$

where:

- V_{F} is the Forward voltage VF parameter value.
- $V_{t}=k T / q$.
- I_{F} is the Current IF at forward voltage VF parameter value.

The exponential diode model provides the option to include a junction capacitance:

- When you select Fixed or zero junction capacitance for the Junction capacitance parameter, the capacitance is fixed.
- When you select Use parameters CJO, VJ, M \& FC for the Junction capacitance parameter, the block uses the coefficients $C J O, V J, M$, and $F C$ to calculate a junction capacitance that depends on the junction voltage.
- When you select Use C-V curve data points for the Junction capacitance parameter, the block uses three capacitance values on the C-V capacitance curve to estimate $C J O, V J$ and M and uses these values with the specified value of $F C$ to calculate a junction capacitance that depends on the junction voltage. The block calculates $C J O, V J$ and M as follows:
- CJ0 $=C_{1}\left(\left(V_{R 2}-V_{R 1}\right) /\left(V_{R 2}-V_{R 1}\left(C_{2} / C_{1}\right)^{-1 / M}\right)\right)^{M}$
- $V J=-\left(-V_{R 2}\left(C_{1} / C_{2}\right)^{-1 / M}+V_{R 1}\right) /\left(1-\left(C_{1} / C_{2}\right)^{-1 / M}\right)$
- $M=\log \left(C_{3} / C_{2}\right) / \log \left(V_{R 2} / V_{R 3}\right)$
where:
- $V_{R 1}, V_{R 2}$, and $V_{R 3}$ are the values in the Reverse bias voltages [VR1 VR2 VR3] vector.
- C_{1}, C_{2}, and C_{3} are the values in the Corresponding capacitances [C1 C2 C3] vector.
It is not possible to estimate $F C$ reliably from tabulated data, so you must specify its value using the Capacitance coefficient FC parameter. In the absence of suitable data for this parameter, use a typical value of 0.5.

Photodiode

The reverse bias voltages (defined as positive values) should satisfy $V_{R 3}>V_{R 2}>V_{R 1}$. This means that the capacitances should satisfy $C_{1}>C_{2}>C_{3}$ as reverse bias widens the depletion region and hence reduces capacitance. Violating these inequalities results in an error. Voltages $V_{R 2}$ and $V_{R 3}$ should be well away from the Junction potential $V J$. Voltage $V_{R 1}$ should be less than the Junction potential $V J$, with a typical value for $V_{R 1}$ being 0.1 V .

The voltage-dependent junction is defined in terms of the capacitor charge storage Q_{j} as:

- For $V<F C \times V J$:

$$
Q_{j}=C J 0 \times(V J /(M-1)) \times\left((1-V / V J)^{1-M}-1\right)
$$

- For $V \geq F C \times V J$:

$$
\begin{aligned}
Q_{j}= & C J 0 \times F_{1}+\left(C J 0 / F_{2}\right) \times\left(F_{3} \times(V-F C \times V J)\right. \\
& \left.+0.5 *(M / V J) *\left(V^{2}-(F C \times V J)^{2}\right)\right)
\end{aligned}
$$

where:

- $\left.F_{1}=(V J /(1-M)) \times\left(1-(1-F C)^{1-M}\right)\right)$
- $\left.\left.F_{2}=(1-F C)^{1+M}\right)\right)$
- $F_{3}=1-F C \times(1+M)$

These equations are the same as used in [2], except that the temperature dependence of $V J$ and $F C$ is not modeled. This model does not include the diffusion capacitance term that affects performance for high frequency switching applications.

Basic Assumptions and Limitations

The Photodiode block has the following limitations:

- When you select Use dark current plus a forward bias I-V curve data point for the Diode parameterization parameter, choose a voltage near the diode turn-on voltage. Typically this will be in the range from 0.05 to 1 Volt. Using a value outside of this region may lead to a poor estimate for N.
- This block does not model temperature-dependent effects. SimElectronics simulates the block at the temperature at which the component behavior was measured, as specified by the Measurement temperature parameter value.
- You may need to use nonzero ohmic resistance and junction capacitance values to prevent numerical simulation issues, but the simulation may run faster with these values set to zero.

Photodiode

Dialog Box and Parameters

Main Tab

Block Parameters: Photodiode X
Photodiode
This block represents a photodiode. Structurally it consists of a controlled current source and an exponential diode connected in parallel. The controlled current source produces a current Ip that is proportional to the Radiant flux density presented at the physical signal port D:

Ip $=$ Device sensitivity * Radiant flux density
In order to model dynamic response time, the diode junction capacitance can set to a suitable value.

Sensitivity parameterization

Select one of the following methods for sensitivity parameterization:

- Specify measured current for given flux density Specify the measured current and the corresponding flux density. This is the default method.
- Specify current per unit flux density - Specify the device sensitivity directly.

Measured current

The current the block uses to calculate the device sensitivity. This parameter is only visible when you select Specify measured current for given flux density for the Sensitivity parameterization parameter. The default value is $25 \mu \mathrm{~A}$.

Flux density

The flux density the block uses to calculate the device sensitivity. This parameter is only visible when you select Specify measured current for given flux density for the Sensitivity parameterization parameter. The default value is $5 \mathrm{~W} / \mathrm{m}^{2}$.

Device sensitivity

The current per unit flux density. This parameter is only visible when you select Specify current per unit flux density for the Sensitivity parameterization parameter. The default value is $5 \mathrm{e}-06 \mathrm{~m}^{2 *} \mathrm{~A} / \mathrm{W}$.

Diode parameterization

Select one of the following methods for diode model parameterization:

- Use dark current plus a forward bias I-V data point - Specify the dark current and a point on the diode I-V curve. This is the default method.
- Use dark current and N - Specify dark current and emission coefficient.

Current IF at forward voltage VF

The current at the forward-biased point on the diode I-V curve that the block uses to calculate $I S$ and N. This parameter is only visible when you select Use dark current plus a forward bias I-V data point for the Diode parameterization parameter. The default value is 0.08 A .

Photodiode

Forward voltage VF

The corresponding voltage at the forward-biased point on the diode I-V curve that the block uses to calculate $I S$ and N. This parameter is only visible when you select and Use dark current plus a forward bias I-V data point for the Diode parameterization parameter. The default value is 1.3 V .

Dark current
The current through the diode when it is not exposed to light. The default value is $5 \mathrm{e}-09 \mathrm{~A}$.

Measurement temperature

The temperature at which the I-V curve or dark current was measured. The default value is $25^{\circ} \mathrm{C}$.

Emission coefficient N

The diode emission coefficient or ideality factor. This parameter is only visible when you select Use dark current and N for the Diode parameterization parameter. The default value is 3 .

Photodiode

Ohmic Resistance Tab

```
Block Parameters: Photodiode
-Photodiode
This block represents a photodiode. Structurally it consists of a controlled current source and an exponential diode connected in parallel. The controlled current source produces a current Ip that is proportional to the Radiant flux density presented at the physical signal port D:
Ip \(=\) Device sensitivity * Radiant flux density
In order to model dynamic response time, the diode junction capacitance can set to a suitable value.
```

Parameters

Ohmic resistance RS

The series diode connection resistance. The default value is 0.1Ω.

Photodiode

Junction Capacitance Tab

Junction capacitance

Select one of the following options for modeling the junction capacitance:

- Fixed or zero junction capacitance - Model the junction capacitance as a fixed value.
- Use C-V curve data points - Specify measured data at three points on the diode $\mathrm{C}-\mathrm{V}$ curve.
- Use parameters CJO, VJ, M \& FC - Specify zero-bias junction capacitance, junction potential, grading coefficient, and forward-bias depletion capacitance coefficient.

Zero-bias junction capacitance CJ0

The value of the capacitance placed in parallel with the exponential diode term. This parameter is only visible when you select Fixed or zero junction capacitance or Use parameters CJO, VJ, M \& FC for the Junction capacitance parameter. The default value is 60 pF . When you select Fixed or zero junction capacitance for the Junction capacitance parameter, a value of zero omits junction capacitance.

Reverse bias voltages [VR1 VR2 VR3]

A vector of the reverse bias voltage values at the three points on the diode C-V curve that the block uses to calculate CJO, VJ, and M. This parameter is only visible when you select Use C-V curve data points for the Junction capacitance parameter. The default value is [$\left.\begin{array}{llll}0.1 & 10 & 100\end{array}\right] \mathrm{V}$.

Corresponding capacitances [C1 C2 C3]

A vector of the capacitance values at the three points on the diode C-V curve that the block uses to calculate CJO, VJ, and M. This parameter is only visible when you select Use C-V curve data points for the Junction capacitance parameter. The default value is [45306$]$ pF.

Junction potential VJ

The junction potential. This parameter is only visible when you select Use parameters CJO, VJ, M \& FC for the Junction capacitance parameter. The default value is 1 V .

Grading coefficient M

The grading coefficient. This parameter is only visible when you select Use parameters CJO, VJ, M \& FC for the Junction capacitance parameter. The default value is 0.5 .

Photodiode

Capacitance coefficient FC

Fitting coefficient that quantifies the decrease of the depletion capacitance with applied voltage. This parameter is only visible when you select Use C-V curve data points or Use parameters CJO, VJ, M \& FC for the Junction capacitance parameter. The default value is 0.5 .

Ports

The block has the following ports:

D
Physical port representing incident flux.
$+$
Electrical conserving port associated with the diode positive terminal.

Electrical conserving port associated with the diode negative terminal.
[1] MH. Ahmed and P.J. Spreadbury. Analogue and digital electronics for engineers. 2nd Edition, Cambridge University Press, 1984.
[2] G. Massobrio and P. Antognetti. Semiconductor Device Modeling with SPICE. 2nd Edition, McGraw-Hill, 1993.

See Also Diode, Light-Emitting Diode, Optocoupler

Piezo Linear Motor

Purpose

Library

Description

Model force-speed characteristics of linear piezoelectric traveling wave motor

Translational Actuators
The Piezo Linear Motor block represents the force-speed characteristics of a linear piezoelectric traveling wave motor. The block represents the force-speed relationship of the motor at a level that is suitable for system-level modeling. To simulate the motor, the block uses the following models:

- "Mass and Friction Model for Unpowered Motor" on page 2-265
- "Resonant Circuit Model for Powered Motor" on page 2-265

Mass and Friction Model for Unpowered Motor

The motor is unpowered when the physical signal input v is zero. This corresponds to applying zero RMS volts to the motor. In this scenario, the block models the motor using the following elements:

- An mass whose value is the Plunger mass parameter value.
- A friction whose characteristics you specify using the parameter values in the Motor-Off Friction tab.

The block uses a Simscape Translational Friction block to model the friction component. For detailed information about the friction model, see the Translational Friction block reference page.

Resonant Circuit Model for Powered Motor

When the motor is active, Piezo Linear Motor block represents the motor characteristics using the following equivalent circuit model.

Piezo Linear Motor

In the preceding figure:

- The AC voltage source represents the block's physical signal input of frequency f and magnitude v.
- The resistor R provides the main electrical and mechanical damping term.
- The inductor L represents the rotor vibration inertia.
- The capacitor C represents the piezo crystal stiffness.
- The capacitor C_{p} represents the phase capacitance. This is the electrical capacitance associated with each of the two motor phases.
- The force constant k_{f} relates the RMS current i to the resulting mechanical force.
- The quadratic mechanical damping term, $\lambda \dot{x}^{2}$, shapes the force-speed curve predominantly at speeds close to maximum RPM. \dot{x} is the linear speed.
- The term $M \dot{x}$ represents the plunger inertia.

Piezo Linear Motor

At model initialization, the block calculates the model parameters R, L, C, k_{t} and λ to ensure that the steady-state force-speed curve matches the values for the following user-specified parameters:

- Rated force
- Rated speed
- No-load maximum speed
- Maximum (stall) force

These parameter values are defined for the Rated RMS voltage and Motor natural frequency (or rated frequency) parameter values.
The quadratic mechanical damping term produces a quadratic force-speed curve. Piezoelectric motors force-speed curves can typically be approximated more accurately using a quadratic function than a linear one because the force-speed gradient becomes steeper as the motor approaches the maximum speed.

If the plunger mass M is not specified on the datasheet, you can select a value that provides a good match to the quoted response time. The response time is often defined as the time for the rotor to reach maximum speed when starting from rest, under no-load conditions.
The quality factor that you specify using the Resonance quality factor parameter relates to the equivalent circuit model parameters as follows:

$$
Q=\frac{1}{R} \sqrt{\frac{L}{C}}
$$

This term is not usually provided on a datasheet. You can calculate its value by matching the sensitivity of force to driving frequency.
To reverse the motor direction of operation, make the physical signal input v negative.

Piezo Linear Motor

Basic
Assumptions
and
Limitations

The block has the following limitations:

- When the motor is powered, the model is valid only between zero and maximum speed, for the following reasons:
- Datasheets do not provide information for operation outside of normal range.
- Piezoelectric motors are not designed to operate in the powered braking and generating regions.
The block behaves as follows outside the valid operating region:
- Below zero speed, the model maintains a constant force with a zero speed value. The zero speed value is the Maximum (stall) force parameter value if the RMS input voltage equals the Rated RMS voltage parameter value, and the frequency input equals the Motor natural frequency parameter value.
- Above maximum speed, the model produces the negative force predicted by the equivalent circuit model, but limits the absolute value of the force to the zero-speed maximum force.
- The force-speed characteristics are most representative when operating the model close to the rated voltage and resonant frequency.

Piezo Linear Motor

Dialog Box and Parameters

Electrical Force Tab

Motor natural frequency

Frequency at which the piezoelectric crystal naturally resonates. For most applications, set the input signal at port f to this frequency. To slow down the motor, for example in a closed-loop speed control, use a frequency slightly less than the motor natural frequency. The default value is 92 kHz .

Rated RMS voltage

Voltage at which the motor is designed to operate. The default value is 5.7 V .

Piezo Linear Motor

Rated force

Force the motor delivers at the rated RMS voltage. The default value is 0.1 N .

Rated speed

Motor speed when the motor drives a load at the rated force. The default value is $50 \mathrm{~mm} / \mathrm{s}$.

No-load maximum speed

Motor speed when driving no load and powered at the rated voltage and driving frequency. The default value is $150 \mathrm{~mm} / \mathrm{s}$.

Maximum (stall) force

Maximum force the motor delivers when actively driving a load and powered at the rated voltage and frequency. The default value is 0.15 N .

Note The Holding force parameter value, the load force the motor holds when stationary, may be greater than the Maximum (stall) force parameter value.

Resonance quality factor

Quality factor Q that specifies how force varies as a function of driving frequency. Increasing the quality factor results in a much more rapid decrease in force as driving frequency is moved away from the natural frequency. The default value is 100.

Capacitance per phase

Electrical capacitance associated with each of the two motor phases. The default value is 5 nF .

Piezo Linear Motor

Mechanical Tab

Plunger mass

Mass of the moving part of the motor. The default value is 0.3 g .

Initial rotor speed

Rotor speed at the start of the simulation. The default value is 0 mm / s.

Piezo Linear Motor

Motor-Off Friction Tab

Holding force

The sum of the Coulomb and the static frictions. It must be greater than or equal to the Coulomb friction force parameter value. The default value is 0.3 N .

Coulomb friction force

The friction that opposes rotation with a constant force at any velocity. The default value is 0.15 N .

Piezo Linear Motor

Viscous friction coefficient

Proportionality coefficient between the friction force and the relative velocity. The parameter value must be greater than or equal to zero. The default value is $1 \mathrm{e}-05 \mathrm{~s} * \mathrm{~N} / \mathrm{mm}$.

Transition approximation coefficient

The parameter sets the coefficient value that is used to approximate the transition between the static and the Coulomb frictions. For detailed information about the coefficient, c_{v}, see the Simscape Translational Friction block reference page. The default value is $0.1 \mathrm{~s} / \mathrm{mm}$.

Linear region velocity threshold

The parameter sets the small vicinity near zero velocity, within which friction force is considered to be linearly proportional to the relative velocity. The MathWorks ${ }^{\text {TM }}$ recommends that you use values between $1 \mathrm{e}-6$ and $1 \mathrm{e}-4 \mathrm{~mm} / \mathrm{s}$. The default value is $0.1 \mathrm{~mm} / \mathrm{s}$.

Ports
 The block has the following ports:

f
Physical signal input value specifying the motor driving frequency in Hz .
v
Physical signal input magnitude specifying the RMS supply voltage, and sign specifying the direction of rotation. If v is positive, then a positive force acts from port C to port R .
i
Physical signal output value that is the RMS phase current.
vel
Physical signal output value that is the linear speed of the rotor.
C
Mechanical translational conserving port.

Piezo Linear Motor

R
Mechanical translational conserving port.

Piezo Rotary Motor

Purpose

Library

Description

Model torque-speed characteristics of rotary piezoelectric traveling wave motor

Rotational Actuators
The Piezo Rotary Motor block represents the torque-speed characteristics of a piezoelectric traveling wave motor. The block represents the torque-speed relationship of the motor at a level that is suitable for system-level modeling. To simulate the motor, the block uses the following models:

- "Inertia and Friction Model for Unpowered Motor" on page 2-275
- "Resonant Circuit Model for Powered Motor" on page 2-275

Inertia and Friction Model for Unpowered Motor

The motor is unpowered when the physical signal input v is zero. This corresponds to applying zero RMS volts to the motor. In this scenario, the block models the motor using the following elements:

- An inertia whose value is the Rotor inertia parameter value.
- A friction whose characteristics are determined by the parameter values in the Motor-Off Friction tab.

The block uses a Simscape Rotational Friction block to model the friction component. For detailed information about the friction model, see the Rotational Friction block reference page.

Resonant Circuit Model for Powered Motor

When the motor is active, Piezo Rotary Motor block represents the motor characteristics using the following equivalent circuit model.

Piezo Rotary Motor

In the preceding figure:

- The AC voltage source represents the block's physical signal input of frequency f and magnitude v.
- The resistor R provides the main electrical and mechanical damping term.
- The inductor L represents the rotor vibration inertia.
- The capacitor C represents the piezo crystal stiffness.
- The capacitor C_{p} represents the phase capacitance. This is the electrical capacitance associated with each of the two motor phases.
- The torque constant k_{t} relates the RMS current i to the resulting mechanical torque.
- The quadratic mechanical damping term, $\lambda \omega_{m}{ }^{2}$, shapes the torque-speed curve predominantly at speeds close to maximum RPM. ω_{m} is the mechanical rotational speed.
- The term $J \dot{\omega}_{m}$ represents the rotor inertia.

Piezo Rotary Motor

At model initialization, the block calculates the model parameters R, L, C, k_{t} and λ to ensure that the steady-state torque-speed curve matches the values of the following user-specified parameter values:

- Rated torque

- Rated rotational speed
- No-load maximum rotational speed
- Maximum torque

These parameter values are defined for the Rated RMS voltage and Motor natural frequency (or rated frequency) parameter values.

The quadratic mechanical damping term produces a quadratic torque-speed curve. Piezoelectric motors torque-speed curves can typically be approximated more accurately using a quadratic function than a linear one because the torque-speed gradient becomes steeper as the motor approaches the maximum speed.

If the rotor inertia J is not specified on the datasheet, you can select a value that provides a good match to the quoted response time. The response time is often defined as the time for the rotor to reach maximum speed when starting from rest, under no-load conditions.

The quality factor that you specify using the Resonance quality factor parameter relates to the equivalent circuit model parameters as follows:

$$
Q=\frac{1}{R} \sqrt{\frac{L}{C}}
$$

This term is not usually provided on a datasheet. You can calculate its value by matching the sensitivity of torque to driving frequency.
To reverse the motor direction of operation, make the physical signal input v negative.

Piezo Rotary Motor

Basic
Assumptions
and
Limitations

The block has the following limitations:

- When the motor is powered, the model is valid only between zero and maximum speed, for the following reasons:
- Datasheets do not provide information for operation outside of normal range.
- Piezoelectric motors are not designed to operate in the powered braking and generating regions.
The block behaves as follows outside the valid operating region:
- Below zero speed, the model maintains a constant torque that is the zero rpm torque value. The zero rpm torque value is the Maximum torque parameter value if the RMS input voltage equals the Rated RMS voltage parameter value, and the frequency input equals the Motor natural frequency parameter value.
- Above maximum speed, the model produces the negative torque predicted by the equivalent circuit model, but limits the absolute value of the torque to the zero-speed maximum torque.
- The torque-speed characteristics are most representative when operating the model close to the rated voltage and resonant frequency.

Piezo Rotary Motor

Dialog Box and Parameters

Electrical Torque Tab

Motor natural frequency

Frequency at which the piezoelectric crystal naturally resonates. For most applications, set the input signal at port f to this frequency. To slow down the motor, for example in a closed-loop speed control, use a frequency slightly less than the motor natural frequency. The default value is 40 kHz .

Rated RMS voltage

Voltage at which the motor is designed to operate. The default value is 130 V .

Piezo Rotary Motor

Rated torque

Torque the motor delivers at the rated RMS voltage. The default value is $0.5 \mathrm{~N}^{*} \mathrm{~m}$.

Rated rotational speed

Motor speed when the motor drives a load at the rated torque. The default value is 100 rpm .

No-load maximum rotational speed

Motor rotational speed when driving no load and powered at the rated voltage and driving frequency. The default value is 160 rpm .

Maximum torque

Maximum torque that the motor delivers when actively driving a load and powered at the rated voltage and frequency. The default value is $1 \mathrm{~N} * \mathrm{~m}$.

Note The Holding torque parameter value, the load torque the motor holds when stationary, may be greater than the Maximum torque parameter value.

Resonance quality factor

Quality factor Q that specifies how torque varies as a function of driving frequency. Increasing the quality factor results in a much more rapid decrease in torque as driving frequency is moved away from the natural frequency. The default value is 100.

Capacitance per phase

Electrical capacitance associated with each of the two motor phases. The default value is 5 nF .

Piezo Rotary Motor

Mechanical Tab

Rotor inertia

Rotor resistance to change in motor motion. The default value is $200 \mathrm{~g} * \mathrm{~cm}^{2}$.

Initial rotor speed

Rotor speed at the start of the simulation. The default value is 0 rpm .

Piezo Rotary Motor

Motor-Off Friction Tab

Holding torque

The sum of the Coulomb and the static frictions. It must be greater than or equal to the Coulomb friction torque parameter value. The default value is $1.5 \mathrm{~N} * \mathrm{~m}$.

Coulomb friction torque

The friction that opposes rotation with a constant torque at any velocity. The default value is $1 \mathrm{~N}^{*} \mathrm{~m}$.

Piezo Rotary Motor

Viscous friction coefficient

Proportionality coefficient between the friction torque and the relative angular velocity. The parameter value must be greater than or equal to zero. The default value is $0.001 \mathrm{~N} * \mathrm{~m} /\left(\mathrm{rad}^{*} \mathrm{~s}\right)$.

Transition approximation coefficient

The parameter sets the coefficient value that is used to approximate the transition between the static and the Coulomb frictions. For detailed information about the coefficient, c_{v}, see the Simscape Rotational Friction block reference. The default value is $10 \mathrm{~s} / \mathrm{rad}$.

Linear region velocity threshold

The parameter sets the small vicinity near zero velocity, within which friction torque is considered to be linearly proportional to the relative velocity. The MathWorks recommends that you use values in the range between $1 e-5$ and $1 e-3 \mathrm{rad} / \mathrm{s}$. The default value is $1 \mathrm{e}-04 \mathrm{rad} / \mathrm{s}$.

Ports
 The block has the following ports:

f
Physical signal input value specifying the motor driving frequency in Hz .
v
Physical signal input magnitude specifying the RMS supply voltage, and sign specifying the direction of rotation. If v is positive, then a positive torque acts from port C to port R .

Physical signal output value that is the RMS phase current.

Physical signal output value that is the rotational speed of the rotor.

C
Mechanical rotational conserving port.

Piezo Rotary Motor

R
Mechanical rotational conserving port.

Purpose

Library

Description

Model electrical and force characteristics of piezoelectric stacked actuator

Translational Actuators

The Piezo Stack block represents the electrical and force characteristics of a piezoelectric stacked actuator using the following equations:

$$
\begin{aligned}
& S=s^{E} T+d^{\prime} E \\
& D=d T+\varepsilon^{T} E
\end{aligned}
$$

where

- S is the strain tensor.
- T is the stress tensor.
- E is the electric field vector.
- D is the electric displacement vector.
- s^{E} is the elastic compliance matrix when subjected to a constant electric field.
- d is the piezoelectric constant matrix.
- ε^{T} is the permittivity measured at a constant stress.

Note The block models one-dimensional lumped parameter behavior, so S, T, E and D are all scalar values.

You can specify the block parameters that determine static force using either datasheet parameters or material properties, as determined by the value of the Parameterization parameter on the Static Force tab of the block dialog box.
The Dynamic Forces tab of the block dialog box lets you include optional effective mass and mechanical damping effects.

Piezo Stack

- If you specify a nonzero value for the Effective mass parameter or a finite value for the Resonant frequency at constant field parameter, the block attaches a lumped mass to the mechanical R port. When you specify a finite resonant frequency, the block calculates the effective mass to achieve the correct resonant frequency.
- If you specify a nonzero value for the Damping parameter or a finite value for the Mechanical quality factor parameter, the block adds a damping term across the R and C mechanical ports. When you specify a mechanical quality factor, Q_{m}, the block calculates the damping from this parameter value as $\sqrt{M k} / Q_{m}$, where k is the short-circuit device stiffness, or equivalently the stiffness at constant field.

A positive voltage across the electrical + to - ports creates a positive displacement acting from the mechanical C to R ports.
Basic
Assumptions
and
Limitations

Piezo Stack

Dialog Box and Parameters

Static Force Tab

Parameterization

Select one of the following methods for static force parameterization:

- Specify from a datasheet - Provide datasheet parameters that the block converts to static force values. This is the default method.
- Specify material properties - Provide material properties that the block converts to static force values.

Stack area

Cross-sectional area of the stack. The default value is $100 \mathrm{~mm}^{2}$.

Piezo Stack

Stack length

Stack length when no load and no electrical potential are applied. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is 36 mm .

No-load displacement at V0 volts

Unconstrained displacement of the stack when a voltage of V0 volts is applied. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is 0.038 mm .

Blocking force at V0 volts

Force the stack produces when a voltage of V0 volts is applied and the stack is physically prevented from expanding. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is $3.8 \mathrm{e}+03 \mathrm{~N}$.

Test voltage V0

Voltage used to determine the no-load displacement and blocking force. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is 120 V .

Capacitance

This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is 13 uF .

Piezo layer thickness

Thickness of each layer in the piezo stack. This parameter is only visible when you select Specify material properties for the Parameterization parameter. The default value is 0.3 mm .

Number of layers

Number of layers in the piezo stack. This parameter is only visible when you select Specify material properties for the Parameterization parameter. The default value is 50 .

Piezoelectric charge constant

Mechanical strain per unit electric field applied. This parameter is only visible when you select Specify material properties for the Parameterization parameter. The default value is $5 e-10$ m / V.

Dielectric constant

Permittivity or dielectric displacement per unit electric field measured at constant stress. This parameter is only visible when you select Specify material properties for the Parameterization parameter. The default value is $2.124 \mathrm{e}-08$ F/m.

Elastic compliance

Strain produced in a piezoelectric material per unit of stress applied. This parameter is only visible when you select Specify material properties for the Parameterization parameter. The default value is $1.9 \mathrm{e}-11 \mathrm{~m}^{2} / \mathrm{N}$.

Piezo Stack

Dynamic Forces Tab

Parameterization

Select one of the following methods for dynamic force parameterization:

- Specify from a datasheet - Provide datasheet parameters that the block converts to dynamic force values. This is the default method.
- Specify material properties - Provide material properties that the block converts to dynamic force values.

Resonant frequency at constant field

Frequency at which the actuator naturally resonates if mechanically perturbed with the electrical ports shorted. This
parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is Inf kHz .

Mechanical quality factor

Factor that affects the damping across the R and C mechanical ports. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is Inf.

Damping

Translational damping term. This parameter is only visible when you select Specify material properties for the Parameterization parameter. The default value is $0 \mathrm{~N} /(\mathrm{m} / \mathrm{s})$.

Effective mass

Mass that approximates the distributed dynamics of the device and causes the stack to resonate at the correct frequency when attached to the mechanical R port. This mass is usually about one third of the actual stack mass. This parameter is only visible when you select Specify material properties for the Parameterization parameter. The default value is 0 g .

Piezo Stack

Initial Conditions Tab

Initial stack deflection

Stack deflection at time zero. If you have an external Ideal Translational Motion Sensor block attached across the Piezo Stack block, you must use the same initial deflection parameter for both blocks. The default value is 0 mm .

Initial voltage

Stack voltage at time zero. The default value is 0 V .
Ports
The block has the following ports:
$+$
Positive electrical port.

Negative electrical port.
C
Mechanical translational conserving port.
R
Mechanical translational conserving port.

PNP Bipolar Transistor

Purpose
Library
Description

Model PNP bipolar transistor using enhanced Ebers-Moll equations
Semiconductor Devices
The PNP Bipolar Transistor block uses a variant of the Ebers-Moll equations to represent an PNP bipolar transistor. The Ebers-Moll equations are based on two exponential diodes plus two current-controlled current sources. The PNP Bipolar Transistor block provides the following enhancements to that model:

- Early voltage effect
- Optional base, collector, and emitter resistances.
- Optional fixed base-emitter and base-collector capacitances.

The collector and base currents are [1]:

$$
\begin{aligned}
& I_{C}=-I_{S}\left[\left(e^{-q V_{B E} /(k T)}-e^{-q V_{B C} /(k T)}\right)\left(1+\frac{V_{B C}}{V_{A}}\right)-\frac{1}{\beta_{R}}\left(e^{-q V_{B C} /(k T)}-1\right)\right] \\
& I_{B}=-I_{S}\left[\frac{1}{\beta_{F}}\left(e^{-q V_{B E}(k T)}-1\right)+\frac{1}{\beta_{R}}\left(e^{-q V_{B C} /(k T)}-1\right)\right]
\end{aligned}
$$

Where:

- I_{B} and I_{C} are base and collector currents, defined as positive into the device.
- $V_{b e}$ is the base-emitter voltage and $V_{b c}$ is the base-collector voltage.
- β_{F} is the ideal maximum current gain BF
- β_{R} is the ideal maximum current gain BR
- V_{A} is the forward Early voltage VAF
- q is the elementary charge on an electron (1.602176e-19 Coulombs).
- k is the Boltzmann constant (1.3806503e-23 J/K).

PNP Bipolar Transistor

- T is the transistor temperature, as defined by the Measurement temperature parameter value.

You can specify the transistor behavior using datasheet parameters that the block uses to calculate the parameters for these equations, or you can specify the equation parameters directly.

If $-q V_{B C} /(k T)>40$ or $-q V_{B E} /(k T)>40$, the corresponding exponential terms in the equations are replaced with
$\left(-q V_{B C} /(k T)-39\right) e^{40}$ and $\left(-q V_{B E} /(k T)-39\right) e^{40}$, respectively. This helps prevent numerical issues associated with the steep gradient of the exponential function e^{x} at large values of x.
Similarly, if $-q V_{B C} /(k T)<-39$ or $-q V_{B E} /(k T)<-39$ then the corresponding exponential terms in the equations are replaced with
$\left(-q V_{B C} /(k T)+40\right) e^{-39}$ and $\left(-q V_{B E} /(k T)+40\right) e^{-39}$, respectively.
Optionally, you can specify parasitic fixed capacitances across the base-emitter and base-collector junctions. You also have the option to specify base, collector, and emitter connection resistances.

Basic Assumptions and Limitations

The PNP Bipolar Transistor model has the following limitations:

- This block does not model temperature-dependent effects. SimElectronics simulates the block at the temperature at which the component behavior was measured, as specified by the Measurement temperature parameter value.
- You may need to use nonzero ohmic resistance and junction capacitance values to prevent numerical simulation issues, but the simulation may run faster with these values set to zero.

PNP Bipolar Transistor

Dialog Box and Parameters

Main Tabx
-PNP Bipolar Transistor
This block represents a PNP transistor modeled using a variant of the Ebers-Moll equations. The Ebers-Moll equations are based on two exponential diodes plus two current-controlled current sources. In addition, this block adds the Early voltage effect, and gives the option to include base, emitter and emitter resistances plus fixed base-emitter and base-collector capacitances. For full details of the equations, consult the documentation. The equation parameters can either be specified directly, or are derived from standard datasheet parameters.

Parameters

| Main | Ohmic Resistance |
| :--- | :--- | Junction Capacitance

Parameterization

Select one of the following methods for block parameterization:

- Specify from a datasheet - Provide parameters that the block converts to equations that describe the transistor. The block calculates the forward Early voltage VAF as $I c / h _o e$, where $I c$ is the Collector current at which h-parameters are defined parameter value, and $h_{-} o e$ is the Output

PNP Bipolar Transistor

admittance \mathbf{h} _oe parameter value [2]. The block sets $B F$ to the small-signal Forward current transfer ratio h_fe value. The block calculates the saturation current $I S$ from the specified Voltage Vbe value and the corresponding Current Ib for voltage Vbe value when $I c$ is zero. This is the default method.

- Specify using equation parameters directly - Provide equation parameters $I S, B F$, and $V A F$.

Forward current transfer ratio h_fe

Small-signal current gain. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is 100 .

Output admittance h_oe

Derivative of the collector current with respect to the collector-emitter voltage for a fixed base current. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is $5 \mathrm{e}-051 / \Omega$.

Collector current at which h-parameters are defined

The h-parameters vary with operating point, and are defined for this value of the collector current. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is 1 mA .

Voltage Vbe

Base-emitter voltage when the collector current is zero and the base current is $I b$. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is 0.55 V .

Current Ib for voltage Vbe

Base current when the base-emitter voltage is Vbe and the collector current is zero. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is 0.5 mA .

PNP Bipolar Transistor

Forward current transfer ratio BF

Ideal maximum forward current gain. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter. The default value is 100 .

Saturation current IS

Transistor saturation current. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter. The default value is $1 \mathrm{e}-14 \mathrm{~A}$.

Forward Early voltage VAF

In the standard Ebers-Moll equations, the gradient of the $I c$ versus Vce curve is zero in the normal active region. The additional forward Early voltage term increases this gradient. The intercept on the $V c e$-axis is equal to $-V A F$ when the linear region is extrapolated. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter. The default value is 200 V.

Reverse current transfer ratio BR

Ideal maximum reverse current gain. This value is often not quoted in manufacturer datasheets because it is not significant when the transistor is biased to operate in the normal active region. When the value is not known and the transistor is not to be operated on the inverse region, use the default value of 1 .

Measurement temperature

Temperature at which $V b e$ and $I b$ or $I S$ are measured. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is $25^{\circ} \mathrm{C}$.

PNP Bipolar Transistor

Ohmic Resistance Tab

Collector resistance RC

Resistance at the collector. The default value is 0.1Ω.

Emitter resistance RE

Resistance at the emitter. The default value is 0.1Ω.

Zero bias base resistance RB

Resistance at the base at zero bias. The default value is 0.1Ω.

PNP Bipolar Transistor

Junction Capacitance Tab

Base-collector capacitance

Parasitic capacitance across the base-collector junction. The default value is 5 pF .

Base-emitter capacitance

Parasitic capacitance across the base-emitter junction. The default value is 5 pF .

PNP Bipolar Transistor

Ports The block has the following ports:

B
Electrical conserving port associated with the transistor base terminal.

C
Electrical conserving port associated with the transistor collector terminal.

E
Electrical conserving port associated with the transistor emitter terminal.

Examples See the PNP Bipolar Transistor Characteristics demo.
References [1] G. Massobrio and P. Antognetti. Semiconductor Device Modeling with SPICE. 2nd Edition, McGraw-Hill, 1993.
[2] H. Ahmed and P.J. Spreadbury. Analogue and digital electronics for engineers. 2nd Edition, Cambridge University Press, 1984.

See Also Diode, NPN Bipolar Transistor

Positive Supply Rail

Purpose Model ideal positive supply rail
 Library
 Sources

Description $\stackrel{V}{-}$

The Positive Supply Rail block represents an ideal positive supply rail. Use this block instead of the Simscape DC Voltage Source block to define the output voltage relative to the Simscape Electrical Reference block that must appear in each model.

Note Do not attach more than one Positive Supply Rail block to any connected line.

Dialog Box and Parameters

Constant voltage

The voltage at the output port relative to the Electrical Reference block ground port. The value must be greater than zero. The default value is 1 V .

The block has the following ports:

Positive Supply Rail

Positive electrical voltage.
See Also Simscape DC Voltage Source, Negative Supply Rail

Potentiometer

Purpose

Library

Description

Model rotary or linear-travel potentiometer controlled by physical signal

Passive Devices

The Potentiometer block represents a rotary or linear-travel potentiometer, with the wiper position controlled by the input physical signal.
If the potentiometer resistance changes linearly based on wiper position, then the resistance between the wiper position and port L is:

$$
R_{W L}=\frac{R_{0}}{x_{\max }-x_{\min }}\left(x-x_{\min }\right)
$$

where

- $R_{W L}$ is the resistance between the wiper position and port L .
- R_{0} is the total resistance between ports L and R .
- x is the wiper position.
- $x_{\text {min }}$ is the value of the wiper position when the wiper is at port L .
- $x_{\max }$ is the value of the wiper position when the wiper is at port R.

If you specify LOG for the potentiometer resistance Taper parameter, then the resistance between the wiper position and port L is:

$$
R_{W L}= \begin{cases}A\left(e^{\lambda\left(x-x_{\min }\right)}-1\right) & \text { if resistance gradient is higher at } \mathrm{R} \\ R_{0}-A\left(e^{\lambda\left(x_{\max }-x\right)}-1\right) & \text { if resistance gradient is higher at } \mathrm{L}\end{cases}
$$

where A and λ are chosen such that $R_{W L}$ at $x_{\max }$ is R_{0}, and $R_{W L}$ at $x=$ $\left(x_{\max }+x_{\min }\right) / 2$ is equal to $R_{a v}$, the resistance when the wiper is centered.

Potentiometer

> Note Potentiometers widely described as LOG or logarithmic taper are, in fact, exponential taper. That is, the gradient of the resistance between wiper and left-hand port increases as the resistance increases. The Potentiometer block implements this behavior.

For both linear and logarithmic tapers, the resistance between the wiper position and port R is:

$$
R_{W R}=R_{0}-R_{W L}
$$

where

- $R_{W R}$ is the resistance between the wiper position and port R .
- R_{0} is the total resistance between ports L and R .
- $R_{W L}$ is the resistance between the wiper position and port L .

Total resistance

The resistance between port L and port R when port W is open-circuit. The default value is 1000Ω.

Potentiometer

Residual resistance

The lower limit placed on the resistance between the wiper and the two end ports. It must be greater than zero. A typical value is $5 \mathrm{e}-3$ times the total resistance. The default value is 1Ω.

Resistance when centered

This parameter is available only if you select LOG for the Taper parameter. If you select Higher at R for the Resistance gradient parameter, then Resistance when centered is the resistance between port L and port W when the wiper is centered. Otherwise, if you select Higher at R for the Resistance gradient parameter, then Resistance when centered is the resistance between port R and port W when the wiper is centered. Because the resistance taper is exponential in shape, the value of the Resistance when centered parameter must be less than half of the Total resistance parameter value. The default value is 200Ω.

PS input for wiper at L

The value of the input physical signal at port x that corresponds to the wiper being located at port L. The default value is 0 .

PS input for wiper at R

The value of the input physical signal at port x that corresponds to the wiper being located at port R. The default value is 1 .

Taper

Specifies the potentiometer resistance taper behavior: LIN (linear) or LOG (logarithmic). The default value is LIN.

Resistance gradient

Specifies whether the potentiometer resistance varies more rapidly at the left or the right end: Higher at L or Higher at R. This parameter is available only if you select LOG for the Taper parameter. The default value is Higher at R.

Ports The block has the following ports:

Potentiometer

L
Electrical port representing the left pin.
R
Electrical port representing the right pin.
W
Electrical port representing the wiper pin.
x
Physical signal input port controlling the wiper position.

See Also
Simscape Variable Resistor

Proximity Sensor

Purpose

Model simple distance sensor

Library

Sensors
Description
DR

The Proximity Sensor block represents a simple proximity sensor. The sensing distance Z is defined as the distance normal to the sensor surface at which the sensor detects an object for a given radial offset R, as shown in the following figure.

A typical sensing distance curve is shown in the following figure.

The output is modeled by an electrical switch which can either be Normally Open (N.O.) or Normally Closed (N.C.) when no object is detected.

Proximity Sensor

Dialog Box and Parameters

Vector of radial offset distances \mathbf{R}

Vector of distances from the sensor to the object resolved into a plane tangential to the sensor head. The default value is [-25 $-20-15-10-501510152025$] mm.

Corresponding sensing distances Z

Vector of distances from the sensor to the object resolved with respect to a normal vector at the sensor head. The default value is [00589.5109 .58500] mm.

Output when not detected

Indicates whether the output is Normally Open (N.O.), meaning the output becomes closed only when the object is detected, or Normally Closed (N.C.), meaning the output becomes open

Proximity Sensor

only when the object is detected. The default value is Normally Open (N.O.).

Closed resistance R_closed

The resistance between the + and - ports when the output contacts are closed. The default value is 0.01Ω.

Open conductance G_open

The conductance between the + and - ports when the output contacts are open. The default value is $1 \mathrm{e}-081 / \Omega$.

Ports The block has the following ports:

R
Radial distance to the sensor.
Z
Perpendicular distance to the sensor.
$+$
Positive electrical voltage.

Negative electrical voltage.

Purpose Model generic linear sensor

Library

Sensors
Description The PS Sensor block represents a generic linear sensor. The block
 converts the physical signal input U into an electrical output Y across the + and - ports. The Output type parameter value determines which of the following electrical outputs the block produces:

- Output voltage
- Output current
- Output resistance
Y is related to U as $Y=\max \left(\min \left(A * U+B, Y_{\max }\right), Y_{\min }\right)$ where $Y_{\min }$ and $Y_{\max }$ are minimum and maximum limits on the output, respectively.

Dialog Box and Parameters

Wlock Parameters: PS Sensor					x
PS Sensor This block implements a generic linear sensor. The physical signal input U is converted into an electrical output voltage Y, output current Y or resistance Y across the + and ports, depending on the selected Output type. Y is related to U with the following equation: $Y=\max (\min [(A \times U+B, Y \max], Y \min)$ where Y min and Y max are limits on the output voltage in volts, current in amps or resistance in ohms, depending on the selected Output type. If the Output type is set to Variable resistance, then the minimum resistance Y min must be greater than zero.					
Parameters					
Output type:	Variable voltage				
Sensor gain, A:	1				
Sensor offset, B:	0				
Maximum output, Ymax:	5				
Minimum output, Ymin:	0.01				
	OK	Cancel	Help	Apply	

Output type

Indicates whether the sensor output is a Variable voltage of Y V, a Variable current of Y A, or Variable resistor with a value of $Y \Omega$. The default value is Variable voltage.

Sensor gain, A

The sensitivity of the output Y with respect to the input U, $d Y / d U$. The default value is 1 .

Sensor offset, B

The output when the input U is zero. The output does not exceed the limits $Y_{\max }$ and $Y_{\min }$. The default value is 0 .

Maximum output, Ymax

The upper limit on the sensor output. The following table shows the units of this parameter, which depend on the selected value of the Output type parameter.

Output type	Units
Variable voltage	V
Variable current	A
Variable resistor	Ω

The default value is 5 .

Minimum output, Ymin

The lower limit on the sensor output. The following table shows the units of this parameter, which depend on the selected value of the Output type parameter.

Output type	Units
Variable voltage	V
Variable current	A
Variable resistor	Ω

The default value is 0.01 .
If you select Variable resistance for the Output type parameter, the minimum resistance $Y_{\text {min }}$ must be greater than zero.

Ports

The block has the following ports:

U
Physical input signal.
$+$
Positive electrical voltage.

Negative electrical voltage.

See Also

Simscape Controlled Voltage Source, Simscape Controlled Current Source, and Simscape Variable Resistor

Pulse Current Source

Purpose Model periodic square pulse current source

Library

SPICE-Compatible Components/Sources

Description

The Pulse Current Source block represents a current source whose output current value is a periodic square pulse as a function of time and is independent of the voltage across the terminals of the source. The following equations describe the current through the source as a function of time:

$$
\begin{aligned}
& I_{\text {out }}(0)=I 1 \\
& I_{\text {out }}(T D)=I 1 \\
& I_{\text {out }}(T D+T R)=I 2 \\
& I_{\text {out }}(T D+T R+P W)=I 2 \\
& I_{\text {out }}(T D+T R+P W+T F)=I 1 \\
& I_{\text {out }}(T D+P E R)=I 1
\end{aligned}
$$

where:

- $I 1$ is the Initial value, I1 parameter value.
- I2 is the Pulse value, I2 parameter value.
- $T D$ is the Pulse delay time, TD parameter value.
- $T R$ is the Pulse rise time, TR parameter value.
- $T F$ is the Pulse fall time, TF parameter value.
- $P W$ is the Pulse width, $\mathbf{P W}$ parameter value.
- $P E R$ is the Pulse period, PER parameter value.

The block determines the values at intermediate time points by linear interpolation.

Pulse Current Source

The specified values for $P W$ and $P E R$ have the following effect on the block output:

- If both $P W$ and $P E R$ are infinite, the block produces a step response at time $T D$.
- If $P E R$ is infinite and $P W$ is finite, the block produces a single pulse of width $P W$ and infinite period.
- If $P W$ is infinite and $P E R$ is finite, the block produces a step response with pulses of width $T R$ to a value $I 1$ every $P E R$ seconds.
- If $P W>P E R$, the block produces a step response with pulses of width $T R$ to a value $I 1$ every $P E R$ seconds.

The block uses a small conductance internally to prevent numerical simulation issues. The conductance connects the + and - ports of the device and has a conductance GMIN:

- By default, GMIN matches the Minimum conductance GMIN parameter of the SPICE Environment Parameters block, whose default value is $1 \mathrm{e}-12$.
- To change GMIN, add a SPICE Environment Parameters block to your model and set the Minimum conductance GMIN parameter to the desired value.

Pulse Current Source

Dialog
 Box and Parameters

Initial value, I1

The value of the output current at time zero. The default value is 0 A .

Pulse Current Source

Pulse value, I2

The value of the output current when the output is high. The default value is 0 A .

Pulse delay time, TD

The time at which the pulse first starts. The default value is 0 s .
Pulse rise time, TR
The time it takes the output current to rise from the Initial value, $\mathbf{I} 1$ value to the Pulse value, $\mathbf{I} 2$ value. The default value is $1 \mathrm{e}-09 \mathrm{~s}$. The value must be greater than or equal to 0 .

Pulse fall time, TF

The time it takes the output current to fall from the Pulse value, I2 value to the Initial value, I1 value. The default value is 1e-09 s. The value must be greater than or equal to 0 .

Pulse width, PW

The time width of the output pulse. The default value is Inf s. The value must be greater than 0 .

Pulse period, PER

The period of the output pulse. The default value is Inf s. This value means that the block produces a single pulse with an infinite period. The value must be greater than 0 .

Ports
 The block has the following ports:

Positive electrical voltage.

Negative electrical voltage.
See Also Pulse Voltage Source

Pulse Voltage Source

Purpose Model periodic square pulse voltage source

Library

SPICE-Compatible Components/Sources

Description

The Pulse Voltage Source block represents a voltage source whose output voltage value is a periodic square pulse as a function of time and is independent of the current through the source. The following equations describe the output voltage as a function of time:

$$
\begin{aligned}
& V_{\text {out }}(0)=V 1 \\
& V_{\text {out }}(T D)=V 1 \\
& V_{\text {out }}(T D+T R)=V 2 \\
& V_{\text {out }}(T D+T R+P W)=V 2 \\
& V_{\text {out }}(T D+T R+P W+T F)=V 1 \\
& V_{\text {out }}(T D+P E R)=V 1
\end{aligned}
$$

where:

- V1 is the Initial value, V1 parameter value.
- V2 is the Pulse value, V2 parameter value.
- $T D$ is the Pulse delay time, TD parameter value.
- $T R$ is the Pulse rise time, TR parameter value.
- $T F$ is the Pulse fall time, TF parameter value.
- $P W$ is the Pulse width, $\mathbf{P W}$ parameter value.
- $P E R$ is the Pulse period, PER parameter value.

The block determines the values at intermediate time points by linear interpolation.
The specified values for $P W$ and $P E R$ have the following effect on the block output:

- If both $P W$ and $P E R$ are infinite, the block produces a step response at time $T D$.
- If $P E R$ is infinite and $P W$ is finite, the block produces a single pulse of width $P W$ and infinite period.
- If $P W$ is infinite and $P E R$ is finite, the block produces a step response with pulses of width $T R$ to a value V1 every $P E R$ seconds.
- If $P W>P E R$, the block produces a step response with pulses of width $T R$ to a value $V 1$ every $P E R$ seconds.

Pulse Voltage Source

Dialog
 Box and Parameters

Initial value, V1

The value of the output voltage at time zero. The default value is 0 V .

Pulse value, V2

The value of the output voltage when the output is high. The default value is 0 V .

Pulse delay time, TD

The time at which the pulse first starts. The default value is 0 s .

Pulse rise time, TR

The time it takes the output voltage to rise from the Initial Value, I1 value to the Pulse Value, V2 value. The default value is $1 \mathrm{e}-09 \mathrm{~s}$. The value must be greater than or equal to 0 .

Pulse fall time, TF

The time it takes the output voltage to fall from the Pulse Value, V2 value to the Initial Value, V1 value. The default value is $1 \mathrm{e}-09 \mathrm{~s}$. The value must be greater than or equal to 0 .

Pulse width, PW

The time width of the output pulse. The default value is Inf s .

Pulse period, PER

The period of the output pulse. The default value is Inf s. This value means that the block produces a single pulse with an infinite period.

Ports The block has the following ports:

[^5]See Also Pulse Current Source

Purpose
Model polynomial voltage-controlled current source
Library
Description

SPICE-Compatible Components/Sources
The PVCCS (Polynomial Voltage-Controlled Current Source) block represents a current source whose output current value is a polynomial function of the voltage across the input ports. The following equations describe the current through the source as a function of time:

- If you specify an n-element vector of polynomial coefficients for the Polynomial coefficients parameter:

$$
I_{\text {out }}=p(0)+p(1) * V_{\text {in }}+\ldots+p(n-1) * V_{\text {in }}^{n-1}+p(n) * V_{\text {in }}^{n}
$$

- If you specify a scalar coefficient for the Polynomial coefficients parameter:

$$
I_{o u t}=p * V_{\text {in }}
$$

where:

- $V_{i n}$ is the voltage across the input ports.
- p is the Polynomial coefficients parameter value.

The block uses a small conductance internally to prevent numerical simulation issues. The conductance connects the output ports of the device and has a conductance GMIN:

- By default, GMIN matches the Minimum conductance GMIN parameter of the SPICE Environment Parameters block, whose default value is $1 \mathrm{e}-12$.
- To change GMIN, add a SPICE Environment Parameters block to your model and set the Minimum conductance GMIN parameter to the desired value.

Dialog Box and Parameters

Ports

Block Parameters: PYCCS
x
-PVCCS
The Polynomial Voltage-Controlled Current Source (PVCCS) block generates a current waveform, Iout, by evaluating a polynomial function for a single controlling input voltage, Vin. Vin is the time-dependent voltage across its input terminals.

If you specify a vector of polynomial coefficients, p, in ascending order, the output is:
Iout $=p(0)+p(1)^{*}$ Vin $+\ldots+p(n-1)^{*}$ Vin $\wedge^{\wedge}(n-1)+p(n)^{*}$ Vin^n
If you specify a scalar coefficient, p, the block creates a linearly dependent output current.

Iout $=p^{*}$ Vin
Parameters
Polynomial coefficients: $\quad[01]$

Polynomial coefficients

The polynomial coefficients that relate the input voltage to the output current, as described in the preceding section. The default value is [$\left.\begin{array}{lll}0 & 1\end{array}\right]$.

The block has the following ports:
$+$
Positive electrical input voltage.

Negative electrical input voltage.
N+
Positive electrical output voltage.
N-
Negative electrical output voltage.

See Also PCCCS, PCCVS, PVCCS2, and PVCVS

Purpose

Library

Description

Model polynomial voltage-controlled current source with two controlling inputs

SPICE-Compatible Components/Sources

The PVCCS2 (Two-Input Polynomial Voltage-Controlled Current Source) block represents a current source whose output current value is a polynomial function of the voltages across the pairs of controlling input ports. The following equations describes the current through the source as a function of time:

$$
I_{\text {out }}=p_{1}+p_{2} * V_{\text {in } 1}+p_{3} * V_{\text {in } 2}+p_{4}^{*} * V_{\text {in } 1}^{2}+p_{5} V_{\text {in } 1} * V_{\text {in } 2}+p_{6} * V_{\text {in } 2}^{2}+\ldots
$$

where:

- $V_{\text {in } 1}$ is the voltage across the first pair of input ports.
- $V_{i n 2}$ is the voltage across the second pair of input ports.
- p is the Polynomial coefficients parameter value.

The block uses a small conductance internally to prevent numerical simulation issues. The conductance connects the output ports of the device and has a conductance GMIN:

- By default, GMIN matches the Minimum conductance GMIN parameter of the SPICE Environment Parameters block, whose default value is $1 \mathrm{e}-12$.
- To change GMIN, add a SPICE Environment Parameters block to your model and set the Minimum conductance GMIN parameter to the desired value.

Dialog Box and Parameters

Ports

The block has the following ports:
$+1$
Positive electrical input voltage of first controlling source.
-1
Negative electrical input voltage of first controlling source.
$+2$
Positive electrical input voltage of second controlling source.
-2
Negative electrical input voltage of second controlling source.
N+
Positive electrical output voltage.
N-
Negative electrical output voltage.
See Also
PCCCS2, PCCVS2, PVCCS, and PVCVS2

Purpose

Model polynomial voltage-controlled voltage source

Library

Description

SPICE-Compatible Components/Sources
The PVCVS (Polynomial Voltage-Controlled Voltage Source) block represents a voltage source whose output voltage value is a polynomial function of the voltage across the input ports. The following equations describe the voltage across the source as a function of time:

- If you specify an n-element vector of polynomial coefficients for the Polynomial coefficients parameter:

$$
V_{\text {out }}=p(0)+p(1) * V_{\text {in }}+\ldots+p(n-1) * V_{\text {in }}^{n-1}+p(n) * V_{\text {in }}^{n}
$$

- If you specify a scalar coefficient for the Polynomial coefficients parameter:

$$
V_{\text {out }}=p^{*} V_{\text {in }}
$$

where:

- $V_{i n}$ is the voltage across the input ports.
- p is the Polynomial coefficients parameter value.

Dialog Box and Parameters

Ports

The block has the following ports:
$+$
Positive electrical input voltage.

Negative electrical input voltage.
N+
Positive electrical output voltage.
N -
Negative electrical output voltage.

See Also PCCCS, PCCVS, PVCCS, and PVCVS2

PVCVS2

Purpose

Library
Description

Model polynomial voltage-controlled voltage source with two controlling inputs

SPICE-Compatible Components/Sources
The PVCVS2 (Two-Input Polynomial Voltage-Controlled Voltage Source) block represents a voltage source whose output voltage value is a polynomial function of the voltages across the pairs of controlling input ports. The following equations describes the voltage across the source as a function of time:

$$
V_{\text {out }}=p_{1}+p_{2} * V_{\text {in } 1}+p_{3} * V_{\text {in } 2}+p_{4} * V_{\text {in } 1}^{2}+p_{5} V_{\text {in } 1} * V_{\text {in } 2}+p_{6} * V_{\text {in } 2}^{2}+\ldots
$$

where:

- $V_{i n 1}$ is the voltage across the first pair of input ports.
- $V_{i n 2}$ is the voltage across the second pair of input ports.
- p is the Polynomial coefficients parameter value.

The block uses a small conductance internally to prevent numerical simulation issues. The conductance connects the output ports of the device and has a conductance GMIN:

- By default, GMIN matches the Minimum conductance GMIN parameter of the SPICE Environment Parameters block, whose default value is $1 \mathrm{e}-12$.
- To change GMIN, add a SPICE Environment Parameters block to your model and set the Minimum conductance GMIN parameter to the desired value.

Dialog Box and Parameters

Ports

The block has the following ports:
$+1$
Positive electrical input voltage of first controlling source.
-1
Negative electrical input voltage of first controlling source.
$+2$
Positive electrical input voltage of second controlling source.
-2
Negative electrical input voltage of second controlling source.
N+
Positive electrical output voltage.
N -
Negative electrical output voltage.
See Also
PCCCS2, PCCVS2, PVCCS2, and PVCVS

PWL Current Source

Purpose Model lookup table current source
 Library
 SPICE-Compatible Components/Sources

Description The PWL Current Source block represents a current source that you specify in lookup table form using a vector of time values and a vector of the corresponding current values. You must specify at least four time-current value pairs. The block generates a time-dependent current based on these time-current values using the selected interpolation and extrapolation methods. You have a choice of three interpolation methods and two extrapolation methods. The output current is independent of the voltage across the terminals of the source.

The block uses a small conductance internally to prevent numerical simulation issues. The conductance connects the + and - ports of the device and has a conductance GMIN:

- By default, GMIN matches the Minimum conductance GMIN parameter of the SPICE Environment Parameters block, whose default value is $1 \mathrm{e}-12$.
- To change GMIN, add a SPICE Environment Parameters block to your model and set the Minimum conductance GMIN parameter to the desired value.

Dialog Box and Parameters

Block Parameters: PWL Current Source				
PWL Current Source The Piecewise Lookup Current Source (PWL) block uses time-current pairs of the form (Time, Current) to specify a time dependent current waveform. Like its SPICE equivalent, this source can use linear, cubic or spline interpolation methods to determine output current values at intermediate time points. The block can use either last point or last two points method for extrapolation.				
Parameters				
Time specification:	[0123		5	\checkmark
Current at specified time:	[0000		A	\checkmark
Interpolation method:	Linear			\checkmark
Extrapolation method:	Last point			\checkmark
	OK	Cancel	Help	Apply

Time specification

The vector of time values as a tabulated 1-by-n array. The time values vector must be strictly monotonically increasing. The values can be non-uniformly spaced. The default value is [0 1234]s.

Current at specified time

The vector of current values as a tabulated 1-by-n array. The current values vector must be the same size as the time values vector. The default value is [000000$] A$.

Interpolation method

Select the method the block uses determine the output current values at intermediate time points that are not specified in the preceding vectors:

- Linear - Use a linear function. This is the default method.

PWL Current Source

- Cubic - Use the Piecewise Cubic Hermite Interpolation Polinomial (PCHIP). For more information, see [1] and the pchip MATLAB function.
- Spline - Use the cubic spline interpolation algorithm described in [2].

Extrapolation method

Select the method the block uses determine the output current values at time points that are outside the time range specified in the preceding vectors:

- Last point value - Use the last specified current value at the appropriate end of the range. That is, use the last specified current value for all time values greater than the last specified time argument, and the first specified current value for all time values less than the first specified time argument. This is the default method.
- Last 2 points - Extrapolate using the linear method (regardless of the interpolation method specified), based on the last two current values at the appropriate end of the range. That is, use the first and second specified current values if the time value is below the specified range, and the two last specified current values if the time value is above the specified range.

Ports	The block has the following ports:
$+\quad$ Positive electrical voltage.	
References \quad	[1] D. Kahaner, Cleve Moler, and Stephen Nash Numerical Methods and Software Prentice Hall, 1988.

[2] W.H. Press, B.P. Flannery, S.A. Teulkolsky, and W.T. Wetterling Numerical Recipes in C: The Art of Scientific Computing Cambridge University Press, 1992.

See Also PWL Voltage Source

Purpose
 Library
 Description

Model lookup table voltage source
SPICE-Compatible Components/Sources
The PWL Voltage Source block represents a voltage source that you specify in lookup table form using a vector of time values and a vector of the corresponding voltage values. You must specify at least four time-current value pairs. The block generates a time-dependent voltage based on these time-voltage values using the selected interpolation and extrapolation methods. You have a choice of three interpolation methods and two extrapolation methods. The output voltage is independent of the current through the source.

Time specification

The vector of time values as a tabulated 1-by-n array. The time values vector must be strictly monotonically increasing. The values can be non-uniformly spaced. The default value is [0 1234]s.

PWL Voltage Source

Voltage at specified time

The vector of voltage values as a tabulated 1-by-n array. The voltage values vector must be the same size as the time values vector. The default value is [$\left.\begin{array}{lllll}0 & 0 & 0 & 0 & 0\end{array}\right] \mathrm{V}$.

Interpolation method

Select the method the block uses determine the output voltage values at intermediate time points that are not specified in the preceding vectors:

- Linear - Use a linear function. This is the default method.
- Cubic - Use the Piecewise Cubic Hermite Interpolation Polinomial (PCHIP). For more information, see [1] and the pchip MATLAB function.
- Spline - Use the cubic spline interpolation algorithm described in [2].

Extrapolation method

Select the method the block uses determine the output voltage values at time points that are outside the time range specified in the preceding vectors:

- Last point value - Use the last specified voltage value at the appropriate end of the range. That is, use the last specified voltage value for all time values greater than the last specified time argument, and the first specified voltage value for all time values less than the first specified time argument. This is the default method.
- Last 2 points - Extrapolate using the linear method (regardless of the interpolation method specified), based on the last two voltage values at the appropriate end of the range. That is, use the first and second specified voltage values if the time value is below the specified range, and the two last specified voltage values if the time value is above the specified range.

The block has the following ports:

PWL Voltage Source

$+$
Positive electrical voltage.
Negative electrical voltage.
References [1] D. Kahaner, Cleve Moler, and Stephen Nash Numerical Methods
and Software Prentice Hall, 1988.
[2] W.H. Press, B.P. Flannery, S.A. Teulkolsky, and W.T. Wetterling Numerical Recipes in C: The Art of Scientific Computing Cambridge University Press, 1992.
See Also PWL Current Source

Purpose

Model switching and associated delay of relay

Library

Description

Passive Devices
The Relay block models a relay controlled by an external physical signal. In the steady state, the relay behaves as follows:

- When the external physical signal at port PS is greater than the Threshold parameter, the relay is energized (meaning closed). The common port C connects to the normally open port S2.
- When the external physical signal at port PS is less than or equal to the Threshold parameter, the relay is not energized (meaning open). The common port C connects to the normally closed port S .

During switching, the relay behaves as follows:

- When the relay closes, the C to S 1 connection breaks open after delay Time-to-break C-S1 connection. The C to S2 connection closes after delay Time-to-make C-S2 connection.
- When the relay opens, the C to S 2 connection breaks open after delay Time-to-break C-S2 connection. The C to S1 connection closes after delay Time-to-make C-S1 connection.

You can specify break delays that are longer than the close delays to implement a make-before-break behavior.

Basic Assumptions and Limitations

If the PS input changes during the switching process, the block behavior can be inaccurate. The switching delay occurs due to both mechanical inertia and the fact that modeling inertia as a delay requires approximation.

Relay

Dialog Box and Parameters

Time-to-break C-S1 connection

Time it takes the connection between ports C and S1 to break apart when the relay is energized. The default value is 0 s .

Time-to-make C-S1 connection

Time it takes the connection between ports C and S 1 to close when the relay is not energized. The default value is 0 s .

Time-to-break C-S2 connection

Time it takes the connection between ports C and S 2 to break apart when the relay is not energized. The default value is 0 s .

Time-to-make C-S2 connection

Time it takes the connection between ports C and S 2 to close when the relay is not energized. The default value is 0 s .

Connected resistance \mathbf{R}

Resistance across closed relay contacts. The parameter value must be greater than zero. The default value is 0.01Ω.

Open-circuit conductance G

Conductance across open relay contacts. The parameter value must be greater than zero. The default value is $1 \mathrm{e}-081 / \Omega$.

Threshold

If the external physical signal is greater than this value, the relay is energized. The default value is 0 .

Initial connection

For the initial state of the relay, select one of the following options:

- C to S1 closed, C to S2 open - The common port C connects to the S 1 contact. This is the default option.
- C to S1 open, C to S2 closed - The common port C connects to the S 2 contact.

Ports This block has the following ports:

PS

Physical signal that energizes and de-energizes the relay.
C
Common electrical port.
S1
Normally-closed electrical port.
S2
Normally-open electrical port.

Simscape Switch

S-R Latch

Purpose	Model an S-R Latch behaviorally
Library	Logic

Description

The S-R Latch block is an abstracted behavioral model of a set-reset latch. It does not model the internal individual MOSFET devices (see "Basic Assumptions and Limitations" on page 2-345 for details). Therefore, the block runs quickly during simulation but retains the correct I/O behavior.

If the gate voltage is greater than the threshold voltage $V_{T H}$, then the input taken is 1 (HIGH). Otherwise, the input is zero (LOW). The gate threshold voltage $V_{T H}$ is halfway between the Low level input voltage ($V_{I L}$) and High level input voltage ($V_{I H}$) parameters.

The block output logic level is either HIGH or LOW, according to the logic levels of the gate inputs and the S-R latch truth table.

\mathbf{S}	\mathbf{R}	\mathbf{Q}
0	0	0
0	1	0
1	0	1
1	1	1

The block models the gate as follows:

- The gate inputs have infinite resistance and finite or zero capacitance.
- The gate output offers a selection of two models: Linear and Quadratic. For more information, see "Selecting the Output Model for Logic Blocks". Use the Output current-voltage relationship parameter to specify the output model.
- You can specify propagation delay for both output models. For Linear output, the block sets the value of the gate output capacitor such that
the resistor-capacitor time constant equals the Propagation delay parameter value. For Quadratic output, the gate input demand is lagged to approximate the Propagation delay parameter value.

The block output voltage depends on the output model selected:

- For Linear model, output high is the High level output voltage parameter value, and output low is the Low level output voltage parameter value.
- For Quadratic model, the output voltage for High and Low states is a function of the output current, as explained in "Quadratic Model Output and Parameters". For zero load current, output high is Vcc (the Supply voltage parameter value), and output low is zero volts.

Basic Assumptions and Limitations

The block does not model the internal individual MOSFET devices that make up the gate (except for the final MOSFET pair if you select the Quadratic option for the Output current-voltage relationship parameter). This limitation has the following implications:

- The behavior of this block is abstracted. In particular, response to input noise and inputs that are around the logic threshold voltage can be inaccurate. Also, dynamic response is approximate.
- The linear drop in output voltage as a function of output current is an approximation to the MOSFET or bipolar output behavior.
- Modeling of the output as a controlled voltage source is representative of a totem-pole or push-pull output stage. To model a device with an open-collector:
1 Connect the output pin to the base of an NPN Bipolar Transistor or PNP Bipolar Transistor block.

2 Set the Output resistance parameter to a suitable value.

S-R Latch

Dialog Inputs Tab

Box and Parameters

Low level input voltage

Voltage value less than which the block interprets the input voltage as LOW. The default value is 2 V .

High level input voltage

Voltage value greater than which the block interprets the input voltage as HIGH. The default value is 3 V .

Average input capacitance

Fixed capacitance that approximates the input capacitance for a MOSFET gate. You can usually find this capacitance value on a manufacturer datasheet. The default value is 5 pF . Setting this value to zero can result in faster simulation times.

S-R Latch

Outputs Tab

S-R Latch

Output current-voltage relationship

Select the output model, Linear or Quadratic. The default value is Linear.

Low level output voltage

Voltage value at the output when the output logic level is LOW. The default value is 0 V . This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

High level output voltage

Voltage value at the output when the output logic level is HIGH. The default value is 5 V . This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

S-R Latch

Output resistance

Value of the series output resistor that is used to model the drop in output voltage resulting from the output current. The default value is 25Ω. You can derive this value from a datasheet by dividing the high-level output voltage by the maximum low-level output current. This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

Supply voltage

Supply voltage value applied to the gate in your circuit. The default value is 5 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Measurement voltage

The gate supply voltage for which mask data output resistances and currents are defined. The default value is 5 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic HIGH output resistance at zero current and at I_OH A row vector [$\mathrm{R} _\mathrm{OH} 1 \mathrm{R} _\mathrm{OH} 2$] of two resistance values. The first value $R_{-} O H 1$ is the gradient of the output voltage-current relationship when the gate is logic HIGH and there is no output current. The second value $\mathrm{R}_{-} \mathrm{OH} 2$ is the gradient of the output voltage-current relationship when the gate is logic HIGH and the output current is $I _O H$. The default value is [25250] Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic HIGH output current I_OH when shorted to ground

The resulting current when the gate is in the logic HIGH state, but the load forces the output voltage to zero. The default value is 63 mA . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

S-R Latch

Logic LOW output resistance at zero current and at I_OL

A row vector [$R _O L 1$ R_OL2] of two resistance values. The first value $R_{-} O L 1$ is the gradient of the output voltage-current relationship when the gate is logic LOW and there is no output current. The second value $R_{-} O L 2$ is the gradient of the output voltage-current relationship when the gate is logic LOW and the output current is $I _O L$. The default value is [30800] Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic LOW output current I_OL when shorted to Vcc

The resulting current when the gate is in the logic LOW state, but the load forces the output voltage to the supply voltage Vcc. The default value is -45 mA . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Propagation delay

Time it takes for the output to swing from LOW to HIGH or HIGH to LOW after the input logic levels change. The default value is 25 ns .

Protection diode on resistance

The gradient of the voltage-current relationship for the protection diodes when forward biased. The default value is 5Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Protection diode forward voltage

The voltage above which the protection diode is turned on. The default value is 0.6 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Initial Conditions Tab

Output initial state

Specify whether the initial output state of the block is High or Low. This parameter is used for both linear and quadratic output states, provided that the Propagation delay parameter is greater than zero and the Solver Configuration block does not have the Start simulation from steady state option selected. The default value is Low.

Ports This block has the following ports:
S
Electrical input port corresponding to the set pin.
R
Electrical input port corresponding to the reset pin.
Q
Electrical output port corresponding to the output pin.

Servomotor

Purpose
Library
Description

Model brushless motor with closed-loop torque control

Rotational Actuators

The Servomotor block represents a brushless motor with closed-loop torque control. This block abstracts the torque-speed behavior of the combined motor and motor driver in order to support system-level simulation where simulation speed is important.
The block allows for the range of torques and speeds that the torque-speed envelope defines. You specify this data in the block dialog box as a set of speed data points and corresponding maximum torque values. The following figure shows a typical torque-speed envelope for a servomotor.

Specify the torque-speed envelope for the forward-direction motoring region (Quadrant 1) only. This region is typically the only one specified by manufacturers. The Servomotor block implements this torque-speed envelope regardless of motor direction or power flow direction, interpreting the x -axis as the absolute value of speed and the y -axis as the absolute value of torque.

The block models the electrical losses as the sum of three terms:
1 A supply series resistance.

2 A torque-independent electrical loss, P_{0}.
3 A torque-dependent electrical loss $k \tau^{2}$, where τ is the torque and k is a constant.

The block produces a positive torque acting from the mechanical C to R ports.

Basic Assumptions and Limitations

This model is based on the following assumptions:

- The motor driver tracks a torque demand with a time constant Tc.
- Motor speed fluctuations due to mechanical load do not affect the motor torque tracking.

Servomotor

Dialog Box and Parameters

Electrical Torque Tab

Vector of rotational speeds

Rotational speeds for permissible steady-state operation. The default value is [$03.75 \mathrm{e}+037.5 \mathrm{e}+038 \mathrm{e}+03$] rpm. To avoid poor performance due to an infinite slope in the torque-speed curve, specify a vector of rotational speeds that does not contain duplicate consecutive values.

Vector of maximum torque values

Maximum torque values for permissible steady-state operation. These values correspond to the speeds in the Vector of rotational
speeds in RPM parameter and define the torque-speed envelope for the motor. The default value is [0.090 .080 .070$]$ Nm.

Torque Control time constant, Tc
Time constant with which the motor driver tracks a torque demand. The default value is 0.02 s .

Motor and driver overall efficiency (percent)

The block defines overall efficiency as

$$
\eta=100 \times \frac{\tau_{0} \times \omega_{0}}{\tau_{0} \times \omega_{0}+P_{0}+k \tau_{0}^{2}}
$$

where:

- τ_{0} represents the Torque at which efficiency is measured
- ω_{0} represents the Speed at which efficiency is measured
- P_{0} represents the Torque-independent electrical losses
- $k \tau_{0}^{2}$ represents the torque-dependent electrical losses.

At initialization, the block solves the efficiency equation for k. The block neglects losses associated with the rotor damping.

Speed at which efficiency is measured

Speed that the block uses to calculate torque-dependent electrical losses. The default value is $3.75 \mathrm{e}+03 \mathrm{rpm}$.

Torque at which efficiency is measured

Torque that the block uses to calculate torque-dependent electrical losses. The default value is 0.08 Nm .

Torque-independent electrical losses

Fixed electrical loss associated with the driver when the motor current and torque are zero. The default value is zero.

Supply series resistance

The equivalent resistance used in series with the DC supply to model electrical losses that are proportional to the driver
supply current. The block assumes that the DC supply current is approximately constant under constant load conditions. The default value is 0Ω.

Mechanical Tab

Rotor inertia

Rotor resistance to change in motor motion. The default value is $5 \mathrm{e}-06 \mathrm{~kg}{ }^{*} \mathrm{~m}^{2}$. The value can be zero.

Rotor damping

Rotor damping. The default value is $1 \mathrm{e}-05 \mathrm{~N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})$. The value can be zero.

Initial rotor speed

Rotor speed at the start of the simulation. The default value is 0 rpm .

Ports This block has the following ports:

$+$
Positive electrical DC supply.

Negative electrical DC supply.
Tr
Reference torque demand.
w
Mechanical speed output.
C
Mechanical rotational conserving port.
R
Mechanical rotational conserving port.
See Also Generic Rotary Actuator, DC Motor, Induction Motor, Shunt Motor, and Universal Motor.

SFFM Current Source

Purpose Model single-frequency FM current source
 Library
 SPICE-Compatible Components/Sources

Description

The SFFM Current Source block represents a single-frequency current source whose frequency-modulated output current value is independent of the voltage across its terminals. The following equation describes the current through the source as a function of time:

$$
I_{\text {out }}=I O+I A * \sin ((2 \pi * F C * \text { Time })+M I * \sin (2 \pi * F S * \text { Time }))
$$

where:

- IO is the Current offset, IO parameter value.
- IA is the Current amplitude, IA parameter value.
- $F C$ is the Carrier frequency, FC parameter value.
- MI is the Modulation index, MI parameter value.
- FS is the Signal frequency, FS parameter value.

The block uses a small conductance internally to prevent numerical simulation issues. The conductance connects the + and - ports of the device and has a conductance GMIN:

- By default, GMIN matches the Minimum conductance GMIN parameter of the SPICE Environment Parameters block, whose default value is $1 \mathrm{e}-12$.
- To change GMIN, add a SPICE Environment Parameters block to your model and set the Minimum conductance GMIN parameter to the desired value.

SFFM Current Source

Dialog Box and Parameters

Current offset, IO

The magnitude of the time-independent part of the output current. The default value is 0 A .

Current amplitude, IA

The magnitude of the sinusoidal part of the output current. The default value is 0 A .

Carrier frequency, FC

Frequency of the carrier wave. The default value is 0 Hz . The value must be greater than or equal to 0 .

SFFM Current Source

Modulation index, MI

The amount by which the modulated signal varies around its unmodulated level. The default value is 0 . The value must be greater than or equal to 0 .

Signal frequency, FS

Frequency of the modulated signal. The default value is 0 Hz . The value must be greater than or equal to 0 .

Ports
The block has the following ports:
$+$
Positive electrical voltage.

Negative electrical voltage.

See Also
SFFM Voltage Source

Purpose

Model single-frequency FM voltage source

Library

Description

SPICE-Compatible Components/Sources output voltage as a function of time:

The SFFM Voltage Source block represents a single-frequency voltage source whose frequency-modulated output voltage value is independent of the current through the source. The following equation describes the

$$
V_{\text {out }}=V O+V A * \sin ((2 \pi * F C * \text { Time })+M I * \sin (2 \pi * F S * \text { Time }))
$$

where:

- VO is the Voltage offset, VO parameter value.
- $V A$ is the Voltage amplitude, VA parameter value.
- $F C$ is the Carrier frequency, FC parameter value.
- MI is the Modulation index, MI parameter value.
- FS is the Signal frequency, FS parameter value.

SFFM Voltage Source

Dialog
 Box and Parameters

Voltage offset, VO

The magnitude of the time-independent part of the output voltage. The default value is 0 V .

Voltage amplitude, VA

The magnitude of the sinusoidal part of the output voltage. The default value is 0 V .

Carrier frequency, FC

Frequency of the carrier wave. The default value is 0 Hz . The value must be greater than or equal to 0 .

Modulation index, MI

The amount by which the modulated signal varies around its unmodulated level. The default value is 0 . The value must be greater than or equal to 0 .

Signal frequency, FS

Frequency of the modulated signal. The default value is 0 Hz . The value must be greater than or equal to 0 .

Ports The block has the following ports:

$+$
 Positive electrical voltage.
 Negative electrical voltage.

See Also
SFFM Current Source

Shunt Motor

Purpose
Library
Description

Model electrical and torque characteristics of shunt motor

Rotational Actuators

The Shunt Motor block represents the electrical and torque characteristics of a shunt motor using the following equivalent circuit model.

When you set the Model parameterization parameter to By equivalent circuit parameters, you specify the equivalent circuit parameters for this model:

- R_{a} - Armature resistance
- L_{a} - Armature inductance
- R_{f} - Field winding resistance
- L_{f} - Field winding inductance

The Shunt Motor block computes the motor torque as follows:
1 The magnetic field in the motor induces the following back emf v_{b} in the armature:

$$
v_{b}=L_{a f} i_{f} \omega
$$

where $L_{a f}$ is a constant of proportionality and ω is the angular velocity.

2 The mechanical power is equal to the power reacted by the back emf:

$$
P=v_{b} i_{a}=L_{a f} i_{f} i_{a} \omega
$$

3 The motor torque is:

$$
T=P / \omega=L_{a f} i_{f} i_{a}
$$

The torque-speed characteristic for the Shunt Motor block model is related to the parameters in the preceding figure. When you set the Model parameterization parameter to By rated power, rated speed \& no-load speed, the block solves for the equivalent circuit parameters as follows:

1 For the steady-state torque-speed relationship, L has no effect.
2 Sum the voltages around the loop:

$$
\begin{aligned}
& V=i_{a} R_{a}+L_{a f} i_{f} \omega \\
& V=i_{f} R_{f}
\end{aligned}
$$

3 Solve the preceding equations for i_{a} and i_{f}.

$$
\begin{aligned}
& i_{f}=\frac{V}{R_{f}} \\
& i_{a}=\frac{V}{R_{a}}\left(1-\frac{L_{a f} w}{R_{f}}\right)
\end{aligned}
$$

4 Substitute these values of i_{a} and i_{f} into the equation for torque:

Shunt Motor

$$
T=\frac{L_{a f}}{R_{a} R_{f}}\left(1-\frac{L_{a f} \omega}{R_{f}}\right) V^{2}
$$

The block uses the rated speed and power to calculate the rated torque. The block uses the rated torque and no-load speed values to get one equation that relates R_{a} and $L_{a f} / R_{f}$. It uses the no-load speed at zero torque to get a second equation that relates these two quantities. Then, it solves for R_{a} and $L_{a f} / R_{f}$

The block models motor inertia J and damping B for all values of the Model parameterization parameter. The output torque is:

$$
T_{\text {load }}=\frac{L_{a f}}{R_{a} R_{f}}\left(1-\frac{L_{a f} \omega}{R_{f}}\right) V^{2}-J \dot{\omega}-B \omega
$$

The block produces a positive torque acting from the mechanical C to R ports.

Dialog
 Box and Parameters

Electrical Torque Tab

Model parameterization

Select one of the following methods for block parameterization:

- By equivalent circuit parameters - Provide electrical parameters for an equivalent circuit model of the motor. This is the default method.

Shunt Motor

- By rated power, rated speed \& no-load speed- Provide power and speed parameters that the block converts to an equivalent circuit model of the motor.

Armature resistance

Resistance of the armature. This parameter is only visible when you select By equivalent circuit parameters for the Model parameterization parameter. The default value is 110Ω.

Field winding resistance

Resistance of the field winding. This parameter is only visible when you select By equivalent circuit parameters for the Model parameterization parameter. The default value is $2.5 \mathrm{e}+03 \Omega$.

Back-emf constant

The ratio of the voltage generated by the motor to the motor speed. The default value is $5.11 \mathrm{~s} * \mathrm{~V} / \mathrm{rad} / \mathrm{A}$.

Armature inductance

Inductance of the armature. If you do not have information about this inductance, set the value of this parameter to a small, nonzero number. The default value is 0.1 H . The value can be zero.

Field winding inductance

Inductance of the field winding. If you do not have information about this inductance, set the value of this parameter to a small, nonzero number. The default value is 0.1 H . The value can be zero.

No-load speed

Speed of the motor when no load is applied. This parameter is only visible when you select By rated power, rated speed \& no-load speed for the Model parameterization parameter. The default value is $4.6 \mathrm{e}+03 \mathrm{rpm}$.

Rated speed (at rated load)

Motor speed at the rated load. This parameter is only visible when you select By rated power, rated speed \& no-load
speed for the Model parameterization parameter. The default value is $4 \mathrm{e}+03 \mathrm{rpm}$.

Rated load (mechanical power)

The mechanical load for which the motor is rated to operate. This parameter is only visible when you select By rated power, rated speed \& no-load speed for the Model parameterization parameter. The default value is 50 W .

Rated DC supply voltage

The voltage at which the motor is rated to operate. This parameter is only visible when you select By rated power, rated speed \& no-load speed for the Model parameterization parameter. The default value is 220 V .

Starting current at rated DC supply voltage

The initial current when starting the motor with the rated DC supply voltage. This parameter is only visible when you select By rated power, rated speed \& no-load speed for the Model parameterization parameter. The default value is 2.09 A .

Shunt Motor

Mechanical Tab

> Block Parameters: Shunt Motor
> Shunt Motor -
> This block represents the electrical and torque characteristics of a shunt motor.
> Motor characteristics can be defined in terms of equivalent circuit parameters Ra (armature resitance), La (armature inductance), Rf (field winding resistance), Lf (field winding inductance) and Laf (back-emf constant). The back emf induced in the armature is given by Vb = Laf * If * W where If is the field current and W is the mechanical angular speed. Alteratively, the motor characteristics can be defined in terms of no-load speed, rated power \& speed, nominal voltage, starting current, La and Lf. If no information is available on armature or field winding inductance, these parameters can be set to a small non-zero value.
> The block produces a positive torque acting from the mechanical C to R ports.

Rotor inertia

Rotor inertia. The default value is $2 \mathrm{e}-04 \mathrm{~kg} \mathrm{~m}^{2}$. The value can be zero.

Rotor damping

Rotor damping. The default value is $1 \mathrm{e}-06 \mathrm{~N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})$. The value can be zero.

Shunt Motor

Initial rotor speed

Speed of the rotor at the start of the simulation. The default value is 0 rpm .

Ports	The block has the following ports: + Positive electrical input.
C \quad Negative electrical input.	
References \quadMechanical rotational conserving port. [1] Bolton, W. Mechatronics: Electronic Control Systems in Mechanical and Electrical Engineering, 3rd edition Pearson Education, 2004.	
See Also	DC Motor, Induction Motor, Servomotor, and Universal Motor.

Sinusoidal Current Source

Purpose Model damped sinusoidal current source

Library

SPICE-Compatible Components/Sources

Description The Sinusoidal Current Source block represents a damped sinusoidal

 current source whose output current is independent of the voltage across the terminals of the source. The following equations describe the current through the source as a function of time:$$
\begin{aligned}
& I_{\text {out }}(\text { Time }<T D)=I O \\
& I_{\text {out }}(\text { Time } \geq T D)=I O+I A^{*} e^{-(\text {Time-TD })^{* D F}} * \sin (2 \pi * F R E Q *(\text { Time }-T D))
\end{aligned}
$$

where:

- IO is the Current offset, IO parameter value.
- IA is the Sinusoidal amplitude, IA parameter value.
- FREQ is the Sinusoidal frequency, FREQ parameter value.
- $T D$ is the Time delay, TD parameter value.
- DF is the Damping factor, DF parameter value.

The block uses a small conductance internally to prevent numerical simulation issues. The conductance connects the + and - ports of the device and has a conductance GMIN:

- By default, GMIN matches the Minimum conductance GMIN parameter of the SPICE Environment Parameters block, whose default value is $1 \mathrm{e}-12$.
- To change GMIN, add a SPICE Environment Parameters block to your model and set the Minimum conductance GMIN parameter to the desired value.

Sinusoidal Current Source

Dialog Box and Parameters

(Block Parameters: Sinusoidal Current Source				
-Sinusoidal Current Source				
The Sinusoidal Current Source block maintains a damped sinusoidal current flow through its terminals, independent of the voltage across its terminals. The following equation describes the current through the sinusoidal source as a function of time:				
Iout $=$ IO+IA**exp(-(Time-TD)*DF)*sin(2**i*REQ ${ }^{*}$ (Time-TD) $)$				
IO is the current offset value. IA is the magnitude of the signal current. FREQ is the frequency of the signal. TD is the signal time delay. DF is the signal damping factor. The default value for frequency (FREQ) differs from SPICE, and is equal to 1 MHz .				
Parameters				
Current offset, IO:			A	\checkmark
Sinusoidal amplitude, IA:			A	,
Sinusoidal frequency, FREQ:			Hz	\checkmark
Time delay, TD:			5	\square
Damping factor, DF:			1/s	\checkmark
	OK	Cancel	Help	Apply

Current offset, I0

The magnitude of the time-independent part of the output current. The default value is 0 A .

Sinusoidal amplitude, IA

The magnitude of the sinusoidal part of the output current. The default value is 0 A .

Sinusoidal frequency, FREQ

The frequency of the output sine wave. The default value is $1 \mathrm{e}+06$ Hz . The value can be less than 0 .

Time delay, TD
The time at which the sine wave first starts. The default value is 0 s . The value can be less than 0 .

Sinusoidal Current Source

Damping factor, DF

The amount by which to amplify or reduce the exponential damping term that multiples the sine wave to produce the output current. The default value is $0 \mathrm{1} / \mathrm{s}$. The value must be greater than or equal to 0 .

Ports The block has the following ports:
$+$
Positive electrical voltage.

Negative electrical voltage.
See Also Sinusoidal Voltage Source

Sinusoidal Voltage Source

Purpose

Model damped sinusoidal voltage source

Library

SPICE-Compatible Components/Sources
Description The Sinusoidal Voltage Source block represents a damped sinusoidal
 voltage source whose output voltage is independent of the current through the source. The following equations describe the output as a function of time:

$$
\begin{aligned}
& V_{\text {out }}(\text { Time }<T D)=V O \\
& V_{\text {out }}(\text { Time } \geq T D)=V O+V A * e^{-(\text {Time }-T D)^{*} F_{F}} * \sin (2 \pi * F R E Q *(\text { Time }-T D))
\end{aligned}
$$

where:

- VO is the Voltage offset, VO parameter value.
- $V A$ is the Sinusoidal amplitude, VA parameter value.
- $F R E Q$ is the Sinusoidal frequency, FREQ parameter value.
- TD is the Time delay, TD parameter value.
- DF is the Damping factor, DF parameter value.

Sinusoidal Voltage Source

Dialog Box and Parameters

Voltage offset, V0

The magnitude of the time-independent part of the output voltage. The default value is 0 V .

Sinusoidal amplitude, VA

The magnitude of the sinusoidal part of the output voltage. The default value is 0 V .

Sinusoidal frequency, FREQ

The frequency of the output sine wave. The default value is $1 \mathrm{e}+06$ Hz . The value can be less than 0 .

Time delay, TD
The time at which the sine wave first starts. The default value is 0 s . The value can be less than 0 .

Sinusoidal Voltage Source

Damping factor, DF

The amount by which to amplify or reduce the exponential damping term that multiples the sine wave to produce the output voltage. The default value is $0 \mathrm{1} / \mathrm{s}$. The value must be greater than or equal to 0 .

Ports The block has the following ports:

Positive electrical voltage.

Negative electrical voltage.
See Also Sinusoidal Current Source

Solar Cell

Purpose Model single solar cell

Library

Sources
Description The Solar Cell block represents a solar cell current source.
The Solar Cell block model includes the following components:

- "Solar-Induced Current" on page 2-378
- "Temperature Dependence" on page 2-380

Solar-Induced Current

The block represents a single solar cell as a resistance R_{s} that is connected in series with a parallel combination of the following elements:

- Current source
- Two exponential diodes
- Parallel resistor R_{p}

The output current I is:

$$
I=I_{p h}-I_{s} *\left(e^{\left(V+I^{*} R_{s}\right) /\left(N^{*} V_{t}\right)}-1\right)-I_{s 2} *\left(e^{\left(V+I^{*} R_{s}\right) /\left(N_{2}^{*} V_{l}\right)}-1\right)-\left(V+I^{*} R_{s}\right) / R_{p}
$$

where:

- $I_{p h}$ is the solar-induced current:

$$
I_{p h}=I_{p h 0} \times \frac{I_{r}}{I_{r 0}}
$$

where:

- I_{r} is the irradiance (light intensity) in $\mathrm{W} / \mathrm{m}^{2}$ falling on the cell.
- $I_{p h o}$ is the measured solar-generated current for the irradiance $I_{r 0}$.
- I_{s} is the saturation current of the first diode.
- $I_{s 2}$ is the saturation current of the second diode.
- V_{t} is the thermal voltage, $k T / q$, where:
- k is the Boltzmann constant.
- T is the device operating temperature parameter value.
- q is the elementary charge on an electron.
- N is the quality factor (diode emission coefficient) of the first diode.
- N_{2} is the quality factor (diode emission coefficient) of the second diode.
- V is the voltage across the solar cell electrical ports.

The quality factor varies for amorphous cells, and is typically 2 for polycrystalline cells.

The block lets you choose between two models:

- An 8-parameter model where the preceding equation describes the output current
- A 5-parameter model that applies the following simplifying assumptions to the preceding equation:
- The saturation current of the second diode is zero.
- The impedance of the parallel resistor is infinite.

If you choose the 5 -parameter model, you can parameterize this block in terms of the preceding equivalent circuit model parameters or in terms of the short-circuit current and open-circuit voltage the block uses to derive these parameters.

All models adjust the block resistance and current parameters as a function of temperature.

Solar Cell

Temperature Dependence

Several solar cell parameters depend on temperature. The solar cell temperature is specified by the Fixed circuit temperature, TFIXED parameter value.

The block provides the following relationship between the solar-induced current $I_{p h}$ and the solar cell temperature T :

$$
I_{p h}(t)=I_{p h} *\left(1+T I P H 1 *\left(T-T_{\text {meas }}\right)\right)
$$

where:

- TIPH1 is the First order temperature coefficient for Iph, TIPH1 parameter value.
- $T_{\text {meas }}$ is the Parameter extraction temperature, Tmeas parameter value.

The block provides the following relationship between the saturation current of the first diode I_{s} and the solar cell temperature T :

$$
I_{s 1}(T)=I_{s 1} *\left(\frac{T}{T_{\text {meas }}}\right)^{(T X I S 1 / N)} * e^{\left(E G *\left(\frac{T}{T_{\text {meas }}}-1\right) /\left(N * V_{t}\right)\right)}
$$

where TXIS1 is the Temperature exponent for Is, TXIS1 parameter value.

The block provides the following relationship between the saturation current of the second diode $I_{s 2}$ and the solar cell temperature T :

$$
I_{\mathrm{s} 2}(T)=I_{\mathrm{s} 2} *\left(\frac{T}{T_{\text {meas }}}\right)^{\left(T X I S 2 / N_{2}\right)} * e^{\left(E G^{*}\left(\frac{T}{T_{\text {meas }}}-1\right) /\left(N_{2} * V_{t}\right)\right)}
$$

where TXIS2 is the Temperature exponent for Is2, TXIS2 parameter value.

The block provides the following relationship between the series resistance R_{s} and the solar cell temperature T :

$$
R_{s}(T)=R_{s} *\left(\frac{T}{T_{\text {meas }}}\right)^{T R S 1}
$$

where TRS1 is the Temperature exponent for Rs, TRS1 parameter value.

The block provides the following relationship between the parallel resistance R_{p} and the solar cell temperature T :

$$
R_{p}(T)=R_{p} *\left(\frac{T}{T_{\text {meas }}}\right)^{T R P 1}
$$

where TRP1 is the Temperature exponent for Rp, TRP1 parameter value.

Solar Cell

Dialog Box and Parameters

Main Tab

Parameterize by

Select one of the following methods for block parameterization:

- By s/c current and o/c voltage, 5 parameter-Provide short-circuit current and open-circuit voltage that the block converts to an equivalent circuit model of the solar cell. This is the default option.
- By equivalent circuit parameters, 5 parameters Provide electrical parameters for an equivalent circuit model of the solar cell using the 5 -parameter solar cell model that makes the following assumptions:
- The saturation current of the second diode is zero.
- The parallel resistor has infinite impedance.
- By equivalent circuit parameters, 8 parameters Provide electrical parameters for an equivalent circuit model of the solar cell using the 8-parameter solar cell model.

Short-circuit current, Isc

The current that flows when you short-circuit the solar cell. This parameter is only visible when you select By s/c current and o/c voltage, 5 parameter for the Parameterize by parameter . The default value is 7.34 A .

Open-circuit voltage, Voc

The voltage across the solar cell when it is not connected. This parameter is only visible when you select By s/c current and o/c voltage, 5 parameter for the Parameterize by parameter . The default value is 0.6 V .

Diode saturation current, Is

The asymptotic reverse current of the first diode for increasing reverse bias in the absence of any incident light. This parameter is only visible when you select one of the following settings:

- By equivalent circuit parameters, 5 parameters for the Parameterize by parameter
- By equivalent circuit parameters, 8 parameters for the Parameterize by parameter
The default value is $1 \mathrm{e}-06 \mathrm{~A}$.

Diode saturation current, Is2

The asymptotic reverse current of the second diode for increasing reverse bias in the absence of any incident light. This parameter is only visible when you select By equivalent circuit parameters, 8 parameters for the Parameterize by parameter. The default value is 0 A .

Solar Cell

Solar-generated current, Iph0

The solar-induced current when the irradiance is $I_{r 0}$. This parameter is only visible when you select one of the following settings:

- By equivalent circuit parameters, 5 parameters for the Parameterize by parameter
- By equivalent circuit parameters, 8 parameters for the Parameterize by parameter
The default value is 7.34 A .

Irradiance used for measurements, $\operatorname{Ir} 0$

The irradiance that produces a current of $I_{p h o}$ in the solar cell. The default value is $1000 \mathrm{~W} / \mathrm{m}^{2}$.

Quality factor, \mathbf{N}

The emission coefficient of the first diode. The default value is 1.5 .

Quality factor, N2

The emission coefficient of the second diode. This parameter is only visible when you select By equivalent circuit parameters, 8 parameters for the Parameterize by parameter. The default value is 2 .

Series resistance, Rs

The internal series resistance. The default value is 0Ω.

Parallel resistance, Rp

The internal parallel resistance. This parameter is only visible when you select By equivalent circuit parameters, 8 parameters for the Parameterize by parameter. The default value is inf Ω.

Temperature Tab

First order temperature coefficient for Iph, TIPH1

The order of the linear increase in the solar-generated current as temperature increases. The default value is $01 / \mathrm{K}$. The value must be greater than or equal to 0 .

Energy gap, EG

The solar cell activation energy. The default value is 1.11 eV . The value must be greater than or equal to 0.1.

Solar Cell

Temperature exponent for Is, TXIS1

The order of the exponential increase in the current from the first diode as temperature increases. The default value is 3 . The value must be greater than or equal to 0 .

Temperature exponent for Is2, TXIS2

The order of the exponential increase in the current from the second diode as temperature increases. This parameter is only visible when you select By equivalent circuit parameters, 8 parameters for the Parameterize by parameter. The default value is 3 . The value must be greater than or equal to 0 .

Temperature exponent for Rs, TRS1
The order of the exponential increase in the series resistance as temperature increases. The default value is 0 . The value must be greater than or equal to 0 .

Temperature exponent for Rp, TRP1

The order of the exponential increase in the parallel resistance as temperature increases. This parameter is only visible when you select By equivalent circuit parameters, 8 parameters for the Parameterize by parameter. The default value is 0 . The value must be greater than or equal to 0 .

Parameter extraction temperature, Tmeas

The temperature at which the solar cell parameters were measured. The default value is 25 C . The value must be greater than 0.

Fixed circuit temperature, TFIXED

The temperature at which to simulate the solar cell. The default value is 25 C . The value must be greater than 0 .

Ports The block has the following ports:

Ir	Incident irradiance.
+	
	Positive electrical voltage.

Negative electrical voltage.
References [1] Gow, J.A. and C.D. Manning. "Development of a Photovoltaic Array Model for Use in Power-Electronics Simulation Studies." IEE Proceedings of Electric Power Applications, Vol. 146, No. 2, pp. 193-200, March 1999.

Solenoid

Purpose
Library
Description

Model electrical characteristics and generated force of solenoid

Translational Actuators

The Solenoid block represents the electrical characteristics and generated force for the solenoid in the following figure:

The return spring is optional. To remove the effects of this spring from the model, set the Spring constant parameter to 0 .
The equation of motion for the plunger as a function of position, x, is:

$$
F_{l}+m \ddot{x}+\lambda \dot{x}+k x=F_{e}
$$

where F_{e} is the electromagnetic force, F_{l} is the load force, λ is the viscous damping term and m is the plunger mass. The electromagnetic force is related to the solenoid current and inductance by:

$$
F_{e}=\frac{1}{2} i^{2} \frac{\partial L(x)}{\partial x}
$$

The inductance, which is derived in [1], can be written as:

$$
\frac{\partial L(x)}{\partial x}=\frac{-\beta}{(\alpha+\beta x)^{2}}
$$

where α and β are constants. Plugging the preceding equation into the equation for electromagnetic force gives the force-stroke relationship of the solenoid for a current i_{0} :

$$
F=\frac{1}{2} i_{0}^{2} \frac{-\beta}{(\alpha+\beta x)^{2}}
$$

The Solenoid block solves for α and β by taking the two specified force and stroke measurements and substituting them into the preceding equation. It solves the resulting equations for α and β.
A positive current from the electrical + to - ports creates a negative force (i.e., a pulling force) from the mechanical C to R ports.

Solenoid

Dialog
 Box and Parameters

Magnetic Force Tab

Forces [F1 F2]

A vector of the force values at the two points on the force-stroke curve. The second measurement point must be at a stroke that is greater than that of the first measurement point. When the manufacturer doesn't provide a force-stroke curve, set F1 to the holding torque (when $\mathrm{X} 1=0$) and F 2 to the pull-in torque when running the solenoid at the Rated voltage Vdc and Rated current Idc values. The default value is [7.50 .75] N.

Stroke [X1 X2]

A vector of the stroke (plunger distance from the fully closed position) values at the two points on the force-stroke curve. The second measurement point must be at a stroke that is greater than that of the first measurement point. To ensure a finite force value, the points must meet the condition

$$
\frac{X 2}{X 1}>\sqrt{\frac{F 1}{F 2}}
$$

The default value is [$\left.1 \begin{array}{ll}5\end{array}\right] \mathrm{mm}$.

Rated voltage Vdc

The voltage at which the solenoid is rated to operate. This voltage value is used to measure the Forces [F1 F2] and Stroke [X1 X2] values. The default value is 50 V .

Rated current Idc

The current that flows when the solenoid is supplied with the Rated voltage Vdc voltage. The default value is 0.05 A .

Solenoid

Mechanical Tab

Block Parameters: Solenoid X

Solenoid
This block implements the electrical and mechanical characteristics of a solenoid. Parameterization is in terms of two points [$\mathrm{X} 1, \mathrm{~F} 1]$ and $[\mathrm{X} 2, \mathrm{~F} 2]$ on its force-stroke curve for a 100 percent duty cycle at Rated voltage Vdc and Rated current Idc where $X 2>X 1>0$ are stoke values and $F 1>F 2>0$ are corresponding forces. The plunger fully in (i.e. air gap closed) corresponds to $X=0$, and pull-in force is assumed to decrease quadratically with the magnitude of X. To ensure the force remains finite, the following condition should hold: $\mathrm{X} 2 / \mathrm{X} 1>$ sqrt (F1/F2)

The plunger Maximum stroke is implemented as a hard stop, the dynamics of which are set by the Contact stiffness and Contact damping parameters. The same parameters are used to model the contact dynamics when the plunger pulls fully in. The Spring constant parameter is used to implement a spring force that pulls the plunger out, and can be set to zero.

A positive current from the electrical + to - ports results in a negative force (i.e. pulling force) acting from the mechanical C to R ports.

Spring constant

Constant representing the stiffness of the spring that acts to retract the plunger when the solenoid is powered off. The force is zero when the plunger is displaced to the Stroke for zero spring force parameter value. The default value is $200 \mathrm{~N} / \mathrm{m}$. Set the spring constant to zero if there is no spring.

Stroke for zero spring force

The stroke at which the spring provides no force. The default value is 5 mm .

Damping

The term λ in the equation of motion for the plunger as a function of position that linearly damps the plunger motion. The default value is $1 \mathrm{~N} /(\mathrm{m} / \mathrm{s})$. The value can be zero.

Plunger mass

The weight of the solenoid plunger. The default value is 0.05 kg . The value can be zero.

Maximum stroke

The maximum amount by which the plunger can be displaced. You can use this parameter to model a hard endstop that limits the stroke. The default value is Inf mm , which means no stroke limit.

Initial plunger position

The amount by which the plunger is displaced at the start of the simulation. The default value is 0 m .

Contact stiffness

Stiffness of the plunger contact that models the hard stop at the minimum $(x=0)$ and maximum ($x=$ Maximum stroke) plunger positions. The default value is $1 \mathrm{e}+06 \mathrm{~N} / \mathrm{m}$.

Contact damping

Damping of the plunger contact that models the hard stop at the minimum ($x=0$) and maximum ($x=$ Maximum stroke) plunger positions. The default value is $500 \mathrm{~N} /(\mathrm{m} / \mathrm{s})$.

Ports
 The block has the following ports:

Solenoid

$+$
Positive electrical input.

Negative electrical input.
C
Mechanical translational conserving port.
R
Mechanical translational conserving port.

References

[1] S.E. Lyshevski. Electromechanical Systems, Electric Machines, and Applied MechatronicsCRC, 1999.

SPICE Diode

Purpose
 Model SPICE-compatible diode

Library

SPICE-Compatible Components/Semiconductor Devices
Description The Diode block represents a SPICE-compatible diode.

The Diode block model includes the following components:

- "Current-Voltage Model" on page 2-395
- "Junction Charge Model" on page 2-397
- "Temperature Dependence" on page 2-398

Current-Voltage Model

The block provides the following relationship between the diode current I_{d} and the diode voltage V_{d} after adjusting the applicable model parameters for temperature.

Applicable Range of $\boldsymbol{V}_{\boldsymbol{d}}$ Values	Corresponding $\boldsymbol{I}_{\boldsymbol{d}}$ Equation
$V_{d}>80 * V_{t}$	$I_{d}=I S\left(\left(\frac{V_{d}}{V_{t}}-79\right) e^{80}-1\right)+V_{d} * G$ min
$80 * V_{t} \geq V_{d} \geq-3 * V_{t}$	$I_{d}=I S *\left(e^{V_{d} V_{t}}-1\right)+V_{d} * G$ min

SPICE Diode

Applicable Range of $\boldsymbol{V}_{\boldsymbol{d}}$ Values	Corresponding $\boldsymbol{I}_{\boldsymbol{d}}$ Equation
$-3^{*} V_{t}>V_{d} \geq-B V$	$I_{d}=-I S\left(1+\frac{27}{\left(V_{d} / V_{t}\right)^{3} e^{3}}\right)+V_{d} * G$ min
$V_{d}<-B V$	$I_{d}=-I B V *\left(e^{\left(-\left(B V+V_{d}\right) / V_{t}\right.}-1\right)-$
	$\left.I S *\left(1-\left(\frac{3}{e^{* B V / V_{t}}}\right)\right)^{3}\right)+V_{d} * G \mathrm{~min}$

Where:

- IS is the Saturation current, IS parameter value.
- $V_{t}=N^{*} k^{*} T / q$
- N is the Emission coefficient, ND parameter value.
- q is the elementary charge on an electron.
- k is the Boltzmann constant.
- T is the diode temperature:
- If you select Device temperature for the Model temperature dependence using parameter, T is the sum of the Circuit temperature value plus the Offset local circuit temperature, TOFFSET parameter value. The Circuit temperature value comes from the SPICE Environment Parameters block, if one exists in the circuit. Otherwise, it comes from the default value for this block.

SPICE Diode

- If you select Fixed temperature for the Model temperature dependence using parameter, T is the Fixed circuit temperature, TFIXED parameter value.
- GMIN is the diode minimum conductance. By default, GMIN matches the Minimum conductance GMIN parameter of the SPICE Environment Parameters block, whose default value is $1 \mathrm{e}-12$. To change GMIN, add a SPICE Environment Parameters block to your model and set the Minimum conductance GMIN parameter to the desired value.
- $B V$ is the Reverse breakdown voltage, $\mathbf{B V}$ parameter value.

Junction Charge Model

The block provides the following relationship between the diode charge Q_{d} and the diode voltage V_{d} after adjusting the applicable model parameters for temperature.

Applicable Range of $\boldsymbol{V}_{\boldsymbol{d}}$ Values	Corresponding $\mathbf{Q}_{\boldsymbol{d}}$ Equation
$V_{d}<F C * V J$	$Q_{d}=T T^{*} I_{d}+C J O * V J * \frac{1-\left(1-\frac{V_{d}}{V J}\right)^{1-M G}}{1-M G}$
$V_{d} \geq F C * V J$	$Q_{d}=T T^{*} I_{d}+$
	$C J O *\left(F 1+\frac{F 3 *\left(V_{d}-F C * V J\right)+\left(\frac{M G}{2 * V J}\right) *\left(V_{d}^{2}-(F C * V J)^{2}\right)}{F 2}\right)$

Where:

- $F C$ is the Capacitance coefficient FC parameter value.

SPICE Diode

- VJ is the Junction potential VJ parameter value.
- $T T$ is the Transit time, TT parameter value.
- CJO is the Zero-bias junction capacitance CJ0 parameter value.
- $M G$ is the Grading coefficient MG parameter value.
- $F 1=V J *\left(1-(1-F C)^{(1-M G)}\right) /(1-M G)$
- $F 2=(1-F C)^{(1+M G)}$
- $F 3=1-F C^{*}(1+M G)$

Temperature Dependence

Several diode parameters depend on temperature. There are two ways to specify the diode temperature:

- When you select Device temperature for the Model temperature dependence using parameter, the diode temperature is

$$
T=T_{C}+T_{O}
$$

where:

- T_{C} is the Circuit temperature parameter value from the SPICE Environment Parameters block. If this block doesn't exist in the circuit, T_{C} is the default value of this parameter.
- T_{O} is the Offset local circuit temperature, TOFFSET parameter value.
- When you select Fixed temperature for the Model temperature dependence using parameter, the diode temperature is the Fixed circuit temperature, TFIXED parameter value.

The block provides the following relationship between the saturation current $I S$ and the diode temperature T :

SPICE Diode

$$
I S(T)=I S *\left(T / T_{\text {meas }}\right)^{\frac{X T I}{N D}} * e^{\left(\frac{T}{T_{\text {meas }}}-1\right) * \frac{E G}{V_{t}}}
$$

where:

- IS is the Transport saturation current, IS parameter value.
- $T_{\text {meas }}$ is the Parameter extraction temperature, TMEAS parameter value.
- XTI is the Saturation current temperature exponent, XTI parameter value.
- $N D$ is the Emission coefficient, ND parameter value.
- $E G$ is the Activation energy, EG parameter value.
- $V_{t}=k T / q$.

The block provides the following relationship between the junction potential $V J$ and the diode temperature T :

$$
V J(T)=V J *\left(\frac{T}{T_{\text {meas }}}\right)-\frac{3 * k * T}{q} * \log \left(\frac{T}{T_{\text {meas }}}\right)-\left(\frac{T}{T_{\text {meas }}}\right) * E G_{T_{\text {meas }}}+E G_{T}
$$

where:

- VJ is the Junction potential, VJ parameter value.
- $E G_{T_{\text {meas }}}=1.16 \mathrm{eV}-\left(7.02 e-4 * T_{\text {meas }}{ }^{2}\right) /\left(T_{\text {meas }}+1108\right)$
- $E G_{T}=1.16 e V-\left(7.02 e-4 * T^{2}\right) /(T+1108)$

The block provides the following relationship between the junction capacitance $C J O$ and the diode temperature T :

SPICE Diode

$$
C J O(T)=C J O *\left[1+M J *\left(400 e-6 *\left(T-T_{\text {meas }}\right)-\frac{V J(T)-V J}{V J}\right)\right]
$$

where CJO is the Zero-bias junction capacitance CJ0 parameter value.

Basic Assumptions and Limitations

The model is based on the following assumptions:

- The Diode block applies initial conditions across junction capacitors and not across the block ports.

Dialog Box and Parameters

Main Tab

Device area, AREA

The diode area. This value multiplies the Saturation current, IS, Zero-bias junction capacitance CJO, and Reverse breakdown current, IBV parameter values. It divides the Ohmic resistance, RS parameter value. The default value is 1 m^{2}. The value must be greater than 0.

Number of parallel devices, SCALE

The number of parallel diodes the block represents. This value multiplies the output current and device charges. The default value is 1 . The value must be greater than 0 .

SPICE Diode

Saturation current, IS

The magnitude of the current that the ideal diode equation approaches asymptotically for very large reverse bias levels. The default value is $1 \mathrm{e}-14 \mathrm{~A} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

Ohmic resistance, RS
The series diode connection resistance. The default value is 0.01 $\mathrm{m}^{2 *} \Omega$. The value must be greater than or equal to 0 .

Emission coefficient, ND

The diode emission coefficient or ideality factor. The default value is 1 . The value must be greater than 0 .

Junction Capacitance Tab

SPICE Diode

Model junction capacitance

Select one of the following options for modeling the junction capacitance:

- No - Do not include junction capacitance in the model. This is the default option.
- Yes - Specify zero-bias junction capacitance, junction potential, grading coefficient, forward-bias depletion capacitance coefficient, and transit time.

Zero-bias junction capacitance CJ0

The value of the capacitance placed in parallel with the exponential diode term. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is $0 \mathrm{~F} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

Junction potential VJ

The junction potential. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 1 V . The value must be greater than 0.01 V .

Grading coefficient MG

The grading coefficient. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 0.5 . The value must be greater than 0 and less than 0.9.

Capacitance coefficient FC

The fitting coefficient that quantifies the decrease of the depletion capacitance with applied voltage. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 0.5 . The value must be greater than or equal to 0 and less than 0.95 .

Transit time, TT

The transit time of the minority carriers that cause diffusion capacitance. This parameter is only visible when you select Yes

SPICE Diode

for the Model junction capacitance parameter. The default value is 0 s . The value must be greater than or equal to 0 .

Specify initial condition

Select one of the following options for specifying an initial condition:

- No - Do not specify an initial condition for the model. This is the default option.
- Yes - Specify the initial diode voltage.

Note The Diode block applies the initial diode voltage across the junction capacitors and not across the ports.

Initial voltage V0

Diode voltage at the start of the simulation. This parameter is only visible when you select Yes for the Model junction capacitance and Yes for the Specify initial condition parameter. The default value is 0 V .

Note The block applies the initial condition across the diode junction, so the initial condition is only effective when charge storage is included, i.e. when one or both of the Zero-bias junction capacitance CJ0 and Transit time, TT parameters are greater than zero.

Reverse Breakdown Tab

Model reverse breakdown

Select one of the following options for modeling the diode reverse breakdown:

- No - Don't model reverse breakdown. This is the default option.
- Yes - Introduce a second exponential term to the diode I-V relationship, thereby modeling a rapid increase in conductance as the breakdown voltage is exceeded.

SPICE Diode

Reverse breakdown current, IBV

The diode current that corresponds to the Reverse breakdown voltage, BV value. This parameter is only visible when you select Yes for the Model reverse breakdown parameter. The default value is $0.001 \mathrm{~A} / \mathrm{m}_{2}$. The value must be greater than 0 .

Note The Diode model does not use this parameter at this time.

Reverse breakdown voltage, BV

The voltage below which to model the rapid increase in conductance that occurs at diode breakdown. This parameter is only visible when you select Yes for the Model reverse breakdown parameter. The default value is Inf V. The value must be greater than or equal to 0 .

Temperature Tab

Model temperature dependence using

Select one of the following options for modeling the diode temperature dependence:

- Device temperature - Use the device temperature, which is the Circuit temperature parameter value (from the SPICE Environment Parameters block, if one exists in the circuit, or the default value for this block otherwise) plus the Offset local circuit temperature, TOFFSET parameter value.
- Fixed temperature - Use a temperature that is independent of the circuit temperature to model temperature dependence.

SPICE Diode

Saturation current temperature exponent, XTI

The order of the exponential increase in the saturation current as temperature increases. This parameter is only visible when you select Device temperature for the Model temperature dependence using parameter. The default value is 3 . The value must be greater than 0.

Activation energy, EG

The diode activation energy. This parameter is only visible when you select Device temperature for the Model temperature dependence using parameter. The default value is 1.11 eV . The value must be greater than or equal to 0.1 .

Offset local circuit temperature, TOFFSET

The amount by which the diode temperature differs from the circuit temperature. This parameter is only visible when you select Device temperature for the Model temperature dependence using parameter. The default value is 0 K .

Parameter extraction temperature, TMEAS

The temperature at which the diode parameters were measured. The default value is 300.15 K . The value must be greater than 0 .

Fixed circuit temperature, TFIXED

The temperature at which to simulate the diode. This parameter is only visible when you select Fixed temperature for the Model temperature dependence using parameter. The default value is 300.15 K . The value must be greater than 0 .

Ports The block has the following ports:
$+$
Positive electrical voltage.

Negative electrical voltage.

See Also
 Diode

SPICE Environment Parameters

Purpose

Set parameters that apply to all connected SPICE-compatible blocks

Library

Description

SPICE-Compatible Components/Utilities
The SPICE Environment Parameters block lets you set parameters that apply to all SPICE-compatible blocks in an electrical network:

- Circuit temperature
- Minimum conductance

If your Simulink ${ }^{\circledR}$ model does not contain a SPICE Environment Parameters block, all blocks use the default values of these parameters. You must connect every network in the system to a SPICE Environment Parameters block to override the default values.

Note The simple semiconductor models in the Semiconductors sublibrary are not temperature dependent, so the SPICE Environment Parameters block only changes the minimum conductance parameter used by the exponential diode and bipolar transistor models.

SPICE Environment Parameters

Dialog
 Box and Parameters

Circuit temperature

The temperature of the connected SPICE-compatible blocks. The default value is 300.15 K .

Minimum conductance GMIN

The minimum conductance used by some blocks. The default value is $1 \mathrm{e}-121 / \Omega$.

Ports
The block has the following ports:
OUT
Electrical output.

SPICE NJFET

Purpose

Model SPICE-compatible N-Channel JFET

Library

Description

SPICE-Compatible Components/Semiconductor Devices
The NJFET block represents a SPICE-compatible N-channel JFET.
The NJFET block model includes the following components:

- "Gate-Source Current-Voltage Model" on page 2-411
- "Gate-Drain Current-Voltage Model" on page 2-412
- "Drain-Source Current-Voltage Model" on page 2-413
- "Junction Charge Model" on page 2-414
- "Temperature Dependence" on page 2-416

Gate-Source Current-Voltage Model

The block provides the following relationship between the gate-source current $I_{g s}$ and the gate-source voltage $V_{g s}$ after adjusting the applicable model parameters for temperature.

Applicable Range of $\mathbf{V}_{g s}$ Values	Corresponding $\mathbf{I}_{\mathbf{g s}}$ Equation
$V_{g s}>80 * V_{t}$	$I_{g s}=I S *\left(\left(\frac{V_{g s}}{V_{t}}-79\right) e^{80}-1\right)+V_{g s} * G$ min
$80 * V_{t} \geq V_{g s}$	$I_{g s}=I S *\left(e^{V_{g s} V_{t}}-1\right)+V_{g s} * G \min$

Where:

- IS is the Saturation current, IS parameter value.
- $V_{t}=N D^{*} k * T / q$
- $N D$ is the Emission coefficient, ND parameter value.

SPICE NJFET

- q is the elementary charge on an electron.
- k is the Boltzmann constant.
- T is the diode temperature:
- If you select Device temperature for the Model temperature dependence using parameter, T is the sum of the Circuit temperature value plus the Offset local circuit temperature, TOFFSET parameter value. The Circuit temperature value comes from the SPICE Environment Parameters block, if one exists in the circuit. Otherwise, it comes from the default value for this block.
- If you select Fixed temperature for the Model temperature dependence using parameter, T is the Fixed circuit temperature, TFIXED parameter value.
- GMIN is the diode minimum conductance. By default, GMIN matches the Minimum conductance GMIN parameter of the SPICE Environment Parameters block, whose default value is $1 \mathrm{e}-12$. To change GMIN, add a SPICE Environment Parameters block to your model and set the Minimum conductance GMIN parameter to the desired value.

Gate-Drain Current-Voltage Model

The block provides the following relationship between the gate-drain current $I_{g d}$ and the gate-drain voltage $V_{g d}$ after adjusting the applicable model parameters for temperature.

Applicable Range of $\mathbf{V}_{\text {gd }}$ Values	Corresponding $I_{\text {gd }}$ Equation
$V_{g d}>80 * V_{t}$	$I_{g d}=I S *\left(\left(\frac{V_{g d}}{V_{t}}-79\right) e^{80}-1\right)+V_{g d} * G$ min
$80 * V_{t} \geq V_{g d}$	$I_{g d}=I S *\left(e^{V_{g d} V_{t}}-1\right)+V_{g d} * G \mathrm{~min}$

SPICE NJFET

Drain-Source Current-Voltage Model

The block provides the following relationship between the drain-source current $I_{d s}$ and the drain-source voltage $V_{d s}$ in normal mode ($V_{d s} \geq 0$) after adjusting the applicable model parameters for temperature.

Applicable Range of $\boldsymbol{V}_{\boldsymbol{g s}}$ and $\boldsymbol{V}_{\mathbf{g d}}$ Values	Corresponding $I_{d s}$ Equation
$V_{g s}-V_{t o} \leq 0$	$I_{d s}=0$
$0<V_{g s}-V_{t o} \leq V_{d s}$	$I_{d s}=\beta\left(V_{g s}-V_{t o}\right)^{2}\left(1+\lambda V_{d s}\right)$
$0<V_{d s}<V_{g s}-V_{t o}$	$I_{d s}=\beta V_{d s}\left(2\left(V_{g s}-V_{t o}\right)-V_{d s}\right)\left(1+\lambda V_{d s}\right)$

Where:

- $V_{t o}$ is the Threshold voltage, VTO parameter value.
- β is the Transconductance, BETA parameter value.
- λ is the Channel modulation, LAMBDA parameter value.

The block provides the following relationship between the drain-source
current $I_{d s}$ and the drain-source voltage $V_{d s}$ in inverse mode ($V_{d s}<0$) after adjusting the applicable model parameters for temperature.

SPICE NJFET

Applicable Range of $\boldsymbol{V}_{\text {gs }}$ and $\boldsymbol{V}_{\text {gd }}$ Values	Corresponding $I_{d s}$ Equation
$V_{g d}-V_{t o} \leq 0$	$I_{d s}=0$
$0<V_{g d}-V_{t o} \leq-V_{d s}$	$I_{d s}=-\beta\left(V_{g d}-V_{t o}\right)^{2}\left(1-\lambda V_{d s}\right)$
$0<-V_{d s}<V_{g s}-V_{t o}$	$I_{d s}=\beta V_{d s}\left(2\left(V_{g d}-V_{t o}\right)+V_{d s}\right)\left(1-\lambda V_{d s}\right)$

Junction Charge Model

The block provides the following relationship between the gate-source charge $Q_{g s}$ and the gate-source voltage $V_{g s}$ after adjusting the applicable model parameters for temperature.

Applicable Range of $\mathbf{V}_{\mathbf{g s}}$ Values	Corresponding $\mathbf{Q}_{g s}$ Equation
$V_{g s}<F C * V J$	
$\left.Q_{g s}=\frac{C G S * V J *\left(1-\left(1-\frac{V_{g s}}{V J}\right)^{1-M G}\right)}{1-M G}\right)$	
$V_{g s} \geq F C * V J$	$Q_{g s}=C G S *\left(F 1+\frac{F 3^{*}\left(V_{g s}-F C * V J\right)+\frac{M G *\left(V_{g s}^{2}-(F C * V J)^{2}\right)}{2 * V J}}{F 2}\right.$

[^6]
SPICE NJFET

- $F C$ is the Capacitance coefficient FC parameter value.
- VJ is the Junction potential VJ parameter value.
- CGS is the Zero-bias GS capacitance, CGS parameter value.
- $M G$ is the Grading coefficient, MG parameter value.
- $F 1=\frac{V J *\left(1-(1-F C)^{1-M G}\right)}{1-M G}$
- $F 2=(1-F C)^{1+M G}$
- $F 3=1-F C *(1+M G)$

The block provides the following relationship between the gate-drain charge $Q_{g d}$ and the gate-drain voltage $V_{g d}$ after adjusting the applicable model parameters for temperature.

Applicable Range of $\mathbf{V}_{\text {gd }}$ Values	Corresponding $\mathbf{Q}_{\mathbf{g d}}$ Equation
$V_{g d}<F C^{*} V J$	$\left.Q_{g d}=\frac{C G D^{*} V J *\left(1-\left(1-\frac{V_{g d}}{V J}\right)^{1-M G}\right)}{1-M G}\right)$
$V_{g d} \geq F C * V J$	$Q_{g d}=C G D^{*}\left(F 1+\frac{F 3 *\left(V_{g d}-F C * V J\right)+\frac{M G *\left(V_{g d}^{2}-(F C * V J)^{2}\right)}{2 * V J}}{F 2}\right)$

Where:

SPICE NJFET

- $C G D$ is the Zero-bias GD capacitance, CGD parameter value.

Temperature Dependence

Several transistor parameters depend on temperature. There are two ways to specify the transistor temperature:

- When you select Device temperature for the Model temperature dependence using parameter, the transistor temperature is

$$
T=T_{C}+T_{O}
$$

where:

- T_{C} is the Circuit temperature parameter value from the SPICE Environment Parameters block. If this block doesn't exist in the circuit, T_{C} is the default value of this parameter.
- T_{O} is the Offset local circuit temperature, TOFFSET parameter value.
- When you select Fixed temperature for the Model temperature dependence using parameter, the transistor temperature is the Fixed circuit temperature, TFIXED parameter value.

The block provides the following relationship between the saturation current $I S$ and the transistor temperature T :

$$
I S(T)=I S *\left(T / T_{\text {meas }}\right)^{\frac{X T I}{N D}} * e^{\left(\frac{T}{T_{\text {meas }}}-1\right) * \frac{E G}{V_{t}}}
$$

where:

- IS is the Saturation current, IS parameter value.
- $T_{\text {meas }}$ is the Parameter extraction temperature, TMEAS parameter value.
- XTI is the Saturation current temperature exponent, XTI parameter value.
- $E G$ is the Energy gap, EG parameter value.

SPICE NJFET

- $V_{t}=N D * k * T / q$
- $N D$ is the Emission coefficient, ND parameter value.

The block provides the following relationship between the junction potential $V J$ and the transistor temperature T :

$$
V J(T)=V J *\left(\frac{T}{T_{\text {meas }}}\right)-\frac{3^{*} k^{*} T}{q} * \log \left(\frac{T}{T_{\text {meas }}}\right)-\left(\frac{T}{T_{\text {meas }}}\right) * E G_{T_{\text {meas }}}+E G_{T}
$$

where:

- $V J$ is the Junction potential VJ parameter value.
- $E G_{T_{\text {meas }}}=1.16 \mathrm{eV}-\left(7.02 e-4 * T_{\text {meas }}{ }^{2}\right) /\left(T_{\text {meas }}+1108\right)$
- $E G_{T}=1.16 e V-\left(7.02 e-4 * T^{2}\right) /(T+1108)$

The block provides the following relationship between the gate-source junction capacitance $C G S$ and the transistor temperature T :

$$
C G S(T)=C G S *\left[1+M G *\left(400 e-6^{*}\left(T-T_{\text {meas }}\right)-\frac{V J(T)-V J}{V J}\right)\right]
$$

where:

- $C G S$ is the Zero-bias GS capacitance, CGS parameter value.

The block uses the $C G S(T)$ equation to calculate the gate-drain junction capacitance by substituting $C G D$ (the Zero-bias GD capacitance, CGD parameter value) for CGS.
The block provides the following relationship between the forward and reverse beta and the transistor temperature T :

SPICE NJFET

$$
\beta(T)=\beta *\left(\frac{T}{T_{\text {meas }}}\right)
$$

where β is the Transconductance, BETA parameter value.

Basic
 The model is based on the following assumptions:
 Assumptions
 and
 Limitations
 - The NJFET block does not support noise analysis.
 - The NJFET block applies initial conditions across junction capacitors and not across the block ports.

SPICE NJFET

Dialog Box and Parameters

Main Tab

Device area, AREA

The transistor area. This value multiplies the Transconductance, BETA, Zero-bias GS capacitance, CGS, Zero-bias GD capacitance, CGD, and Saturation current, IS parameter values. It divides the Source resistance, RS and Drain resistance, RD parameter values. The default value is 1 m^{2}. The value must be greater than 0 .

SPICE NJFET

Number of parallel devices, SCALE

The number of parallel transistors the block represents. This value multiplies the output current and device charges. The default value is 1 . The value must be greater than 0 .

Threshold voltage, VTO

The gate-source voltage above which the transistor produces a nonzero drain current. The default value is -2 V .

Transconductance, BETA

The derivative of drain current with respect to gate voltage. The default value is $1 \mathrm{e}-04 \mathrm{~A} / \mathrm{m}^{2} / \mathrm{V}^{2}$. The value must be greater than or equal to 0 .

Channel modulation, LAMBDA

The channel-length modulation. The default value is $01 / \mathrm{V}$.

Saturation current, IS

The magnitude of the current that the ideal diode equation approaches asymptotically for very large reverse bias levels. The default value is $1 \mathrm{e}-14 \mathrm{~A} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

Emission coefficient, ND

The transistor emission coefficient or ideality factor. The default value is 1 . The value must be greater than 0 .

Source resistance, RS

The transistor source resistance. The default value is $1 \mathrm{e}-4 \mathrm{~m}^{2 *} \Omega$. The value must be greater than or equal to 0 .

Drain resistance, RD

The transistor drain resistance. The default value is $0.01 \mathrm{~m}^{2 *} \Omega$. The value must be greater than or equal to 0 .

Junction Capacitance Tab

Model junction capacitance

Select one of the following options for modeling the junction capacitance:

- No - Do not include junction capacitance in the model. This is the default option.

SPICE NJFET

- Yes - Specify zero-bias junction capacitance, junction potential, grading coefficient, forward-bias depletion capacitance coefficient, and transit time.

Zero-bias GS capacitance, CGS

The value of the capacitance placed between the gate and the source. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 0 $\mathrm{F} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

Zero-bias GD capacitance, CGD

The value of the capacitance placed between the gate and the drain. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 0 $\mathrm{F} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

Junction potential VJ

The junction potential. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 1 V . The value must be greater than 0.01 V .

Grading coefficient, MG

The transistor grading coefficient. The default value is 0.5 . The value must be greater than 0 and less than 0.9.

Capacitance coefficient FC

The fitting coefficient that quantifies the decrease of the depletion capacitance with applied voltage. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 0.5 . The value must be greater than or equal to 0 and less than or equal to 0.95 .

Specify initial condition

Select one of the following options for specifying an initial condition:

- No - Do not specify an initial condition for the model. This is the default option.
- Yes - Specify the initial diode voltage.

SPICE NJFET

Note The NJFET block applies the initial diode voltage across the junction capacitors and not across the ports.

Initial condition voltage ICVDS

Drain-source voltage at the start of the simulation. This parameter is only visible when you select Yes for the Model junction capacitance and Yes for the Specify initial condition parameter. The default value is 0 V .

Initial condition voltage ICVGS

Gate-source voltage at the start of the simulation. This parameter is only visible when you select Yes for the Model junction capacitance and Yes for the Specify initial condition parameter. The default value is 0 V .

SPICE NJFET

Temperature Tab

Model temperature dependence using

Select one of the following options for modeling the diode temperature dependence:

- Device temperature - Use the device temperature, which is the Circuit temperature value plus the Offset local circuit temperature, TOFFSET value. The Circuit temperature value comes from the SPICE Environment Parameters block, if

SPICE NJFET

one exists in the circuit. Otherwise, it comes from the default value for this block.

- Fixed temperature - Use a temperature that is independent of the circuit temperature to model temperature dependence.

Saturation current temperature exponent, XTI

The order of the exponential increase in the saturation current as temperature increases. The default value is 0 . The value must be greater than or equal to 0 .

Activation energy, EG
The energy gap that affects the increase in the saturation current as temperature increases. The default value is 1.11 eV . The value must be greater than 0.1 eV .

Offset local circuit temperature, TOFFSET

The amount by which the transistor temperature differs from the circuit temperature. This parameter is only visible when you select Device temperature for the Model temperature dependence using parameter. The default value is 0 K .

Fixed circuit temperature, TFIXED

The temperature at which to simulate the transistor. This parameter is only visible when you select Fixed temperature for the Model temperature dependence using parameter. The default value is 300.15 K . The value must be greater than 0 .

Parameter extraction temperature, TMEAS

The temperature at which the transistor parameters were measured. The default value is 300.15 K . The value must be greater than 0 .

Ports The block has the following ports:

G
Electrical conserving port associated with the transistor gate terminal.

SPICE NJFET

D
Electrical conserving port associated with the transistor drain terminal.

Electrical conserving port associated with the transistor source terminal.

References
[1] G. Massobrio and P. Antognetti. Semiconductor Device Modeling with SPICE. 2nd Edition, McGraw-Hill, 1993. Chapter 3.

See Also N-Channel JFET, SPICE PJFET

SPICE NMOS

Purpose

Model SPICE-compatible N-Channel MOSFET

Library

SPICE-Compatible Components/Semiconductor Devices
Description
The NMOS block represents a SPICE-compatible N-channel MOSFET.
The NMOS block model includes the following components:

- "Resistance Calculations" on page 2-427
- "Bulk-Source Diode Model" on page 2-428
- "Bulk-Drain Diode Model" on page 2-429
- "Level 1 Drain Current Model" on page 2-430
- "Level 3 Drain Current Model" on page 2-433
- "Junction Charge Model" on page 2-439
- "Temperature Dependence" on page 2-444

Resistance Calculations

The following table shows how the NMOS block calculates the transistor drain resistance. The abbreviations in the table represent the values of the following block parameters:

- Drain resistance, RD
- Sheet resistance, RSH
- Number of drain squares, NRD

Drain resistance, RD Parameter	Sheet resistance, RSH Parameter	Drain Resistance
NaN	NaN	0
$R D$	NaN or $R S H$	$R D$
NaN	$R S H$	$R S H^{*} N R D$

SPICE NMOS

The following table shows how the NMOS block calculates the transistor source resistance. The abbreviations in the table represent the values of the following block parameters:

- Source resistance, RS
- Sheet resistance, RSH
- Number of source squares, NRS

Source resistance, RS Parameter	Sheet resistance, RSH Parameter	Source Resistance
NaN	NaN	0
$R S$	NaN or $R S H$	$R S$
NaN	$R S H$	$R S H^{*} N R S$

Bulk-Source Diode Model

The block provides the following relationship between the bulk-source current $I_{b s}$ and the bulk-source voltage $V_{b s}$ after adjusting the applicable model parameters for temperature.

Applicable Range of $\boldsymbol{V}_{\mathbf{b s}}$ Values	Corresponding $\boldsymbol{I}_{\mathbf{g s}}$ Equation
$V_{b s}>80 * V_{t n}$	$I_{b s}=I S_{b s} *\left(\left(\frac{V_{b s}}{V_{t n}}-79\right) e^{80}-1\right)+V_{b s} * G$ min
$80 V_{t n} \geq V_{b s}$	$I_{b s}=I S_{b s} *\left(e^{V_{b s} / V_{t n}}-1\right)+V_{b s} * G \mathrm{~min}$

Where:

- $I S_{b s}$ is
- The product of the Bulk jet sat current density, JS parameter value and the Area of source, AS parameter value if both these

SPICE NMOS

parameter values and the Area of drain, AD parameter value are nonzero.

- The Bulk saturation current, IS parameter value, otherwise.
- $V_{t n}=N k T / q$
- q is the elementary charge on an electron, 1.6021918e-19 C.
- N is the Emission coefficient, ND parameter value.
- k is the Boltzmann constant.
- T is the diode temperature:
- If you select Device temperature for the Model temperature dependence using parameter, T is the sum of the Circuit temperature value plus the Offset local circuit temperature, TOFFSET parameter value. The Circuit temperature value comes from the SPICE Environment Parameters block, if one exists in the circuit. Otherwise, it comes from the default value for this block.
- If you select Fixed temperature for the Model temperature dependence using parameter, T is the Fixed circuit temperature, TFIXED parameter value.
- GMIN is the diode minimum conductance. By default, GMIN matches the Minimum conductance GMIN parameter of the SPICE Environment Parameters block, whose default value is $1 \mathrm{e}-12$. To change GMIN, add a SPICE Environment Parameters block to your model and set the Minimum conductance GMIN parameter to the desired value.

Bulk-Drain Diode Model

The block provides the following relationship between the bulk-drain current $I_{b d}$ and the bulk-drain voltage $V_{b d}$ after adjusting the applicable model parameters for temperature.

SPICE NMOS

Applicable Range of $\boldsymbol{V}_{b s}$ Values	Corresponding $\boldsymbol{I}_{\mathbf{g s}}$ Equation
$V_{b d}>80 * V_{t n}$	$I_{b d}=I S_{b d} *\left(\left(\frac{V_{b d}}{V_{t n}}-79\right) e^{80}-1\right)+V_{b d} * G$ min
$80 V_{t n} \geq V_{b d}$	$I_{b d}=I S_{b d} *\left(e^{V_{b d} / V_{n n}}-1\right)+V_{b d} * G \min$

Where:

- $I S_{b d}$ is
- The product of the Bulk jct sat current density, JS parameter value and the Area of drain, AD parameter value if both these parameter values and the Area of source, AS parameter value are nonzero.
- The Bulk saturation current, IS parameter value, otherwise.

Level 1 Drain Current Model

The block provides the following relationship between the drain current
I_{d} and the drain-source voltage $V_{d s}$ in normal mode ($V_{d s} \geq 0$) after adjusting the applicable model parameters for temperature.

Normal Mode

Applicable Range of $\boldsymbol{V}_{\text {gs }}$ and $\boldsymbol{V}_{d s}$ Values	Corresponding $\mathbf{I}_{\boldsymbol{d}}$ Equation
$V_{g s}-V_{o n} \leq 0$	$I_{d}=0$
$0<V_{g s}-V_{o n} \leq V_{d s}$	$I_{d}=B E T A *\left(V_{g s}-V_{o n}\right)^{2} \frac{\left(1+L A M B D A * V_{d s}\right)}{2}$
$0<V_{d s}<V_{g s}-V_{o n}$	$I_{d}=B E T A *$ $V_{d s}\left(\left(V_{g s}-V_{o n}\right)-\frac{V_{d s}}{2}\right)\left(1+L A M B D A * V_{d s}\right)$

Where:

- $V_{o n}$ is:
- $M T Y P E * V B I+G A M M A \sqrt{P H I-V_{b s}}$ if $V_{b s} \leq 0$.
- $M T Y P E * V B I+G A M M A\left(\sqrt{P H I}-\frac{V_{b s}}{2 \sqrt{P H I}}\right)$ if $0<V_{b s} \leq 2 * P H I$.
- MTYPE*VBI if $V_{b s}>2^{*} P H I$.
- MTYPE is 1 .
- BETA is $K P^{*} W I D T H /\left(L E N G T H-2^{*} L D\right)$
- $K P$ is:
- The Transconductance, KP parameter value, if this parameter has a numerical value.

SPICE NMOS

- U0*3.9* $\varepsilon_{0} /$ TOX, if Transconductance, KP is NaN and you specify values for both the Oxide thickness, TOX and Substrate doping, NSUB parameters.
- WIDTH is the Width of channel, WIDTH parameter value.
- LENGTH is the Length of channel, LENGTH parameter value.
- $L D$ is the Lateral diffusion, LD parameter value.
- VBI is an built-in voltage value the block uses in calculations. The value is a function of temperature. For a detailed definition, see "Temperature Dependence" on page 2-444.
- PHI is:
- The Surface potential, PHI parameter value, if this parameter has a numerical value.
- $2 * k T_{\text {meas }} / q * \log \left(N S U B / n_{i}\right)$, if Surface potential, PHI is NaN and you specify values for both the Oxide thickness, TOX and Substrate doping, NSUB parameters.
- $L A M B D A$ is the Channel modulation, LAMBDA parameter value.
- GAMMA is:
- The Bulk threshold, GAMMA parameter value, if this parameter has a numerical value.
- TOX $* \sqrt{2 * 11.7^{*} \varepsilon_{0}{ }^{*} q^{*} N S U B} /\left(3.9 * \varepsilon_{0}\right)$, if Bulk threshold, GAMMA is NaN and you specify values for both the Oxide thickness, TOX and Substrate doping, NSUB parameters.
- ε_{0} is the permittivity of free space, $8.854214871 \mathrm{e}-12 \mathrm{~F} / \mathrm{m}$.
- n_{i} is the carrier concentration of intrinsic silicon, $1.45 \mathrm{e}_{10} \mathrm{~cm}^{-3}$.

The block provides the following relationship between the drain current
I_{d} and the drain-source voltage $V_{d s}$ in inverse mode ($V_{d s}<0$) after adjusting the applicable model parameters for temperature.

SPICE NMOS

Inverse Mode

Applicable Range of $\boldsymbol{V}_{\text {gd }}$ and $\boldsymbol{V}_{d s}$ Values	Corresponding $\boldsymbol{I}_{\boldsymbol{d}}$ Equation
$V_{g d}-V_{o n} \leq 0$	$I_{d}=0$
$0<V_{g d}-V_{o n} \leq-V_{d s}$	$I_{d}=-B E T A\left(V_{g d}-V_{o n}\right)^{2}\left(1-L A M B D A * V_{d s}\right) / 2$
$0<V_{d s}<V_{g d}-V_{o n}$	$I_{d}=B E T A *$ $V_{d s}\left(\left(V_{g d}-V_{o n}\right)+V_{d s} / 2\right)\left(1-L A M B D A * V_{d s}\right)$

Where:

- $V_{o n}$ is:
- MTYPE *VBI +GAMMA $\sqrt{P H I-V_{b d}}$ if $V_{b d} \leq 0$.
- $M T Y P E * V B I+G A M M A\left(\sqrt{P H I}-\frac{V_{b d}}{2 \sqrt{P H I}}\right)$ if $0<V_{b d} \leq 2 * P H I$.
- MTYPE*VBI if $V_{b d}>2^{*} P H I$.

Level 3 Drain Current Model

The block provides the following model for drain current $I_{d s}$ in normal mode ($V_{d s} \geq 0$) after adjusting the applicable model parameters for temperature.

$$
I_{D S}=I_{\text {DSO }} * \text { Scale }_{\text {VMAX }} * \text { Scale }_{\text {LChan }} * \text { Scale }_{\text {INV }}
$$

Where:

- $I_{D S O}$ is the Basic Drain Current Model.

SPICE NMOS

- Scale $e_{V M A X}$ is the Velocity Saturation Scaling.
- Scale ${ }_{\text {LChan }}$ is the Channel Length Modulation Scaling.
- Scale ${ }_{I N V}$ is the Weak Inversion Scaling.

The blocks uses the same model for drain current in inverse mode ($V_{d s}<0$), with the following substitutions:

- $V_{b s}-V_{d s}$ for $V_{b s}$
- $V_{g s}-V_{d s}$ for $V_{d s}$
- $-V_{d s}$ for $V_{d s}$

Basic Drain Current Model

The block provides the following relationship between the drain current $I_{d s}$ and the drain-source voltage $V_{d s}$:

$$
I_{D S 0}=B E T A * F_{g a t e} *\left(V_{G S X}-V_{T H}-\frac{1+F_{B}}{2} * V_{D S X}\right) * V_{D S X}
$$

- The block calculates BETA as described in "Level 1 Drain Current Model" on page 2-430.
- The block calculates $F_{G A T E}$ using the following equation:

$$
F_{g a t e}=\frac{1}{1+T H E T A *\left(V_{g s x}-V_{T H}\right)}
$$

- THETA is the Vgs dependence on mobility, THETA parameter value.
- $V_{g s x}=\max \left(V_{G S}, V_{o n}\right)$
- If you specify a nonzero value for the Fast surface state density, NFS parameter, the block calculates $V_{\text {on }}$ using the following equation:

SPICE NMOS

$$
V_{o n}=V_{T H}+x_{n} V_{T}
$$

Otherwise, $V_{o n}=V_{T H}$.

- The block calculates x_{n} using the following equation:

$$
x_{n}=1+\frac{q * N F S}{C O X}+\frac{\left(G A M M A * F_{s} * \sqrt{V_{\text {bulk }}}+\frac{F_{n} * V_{\text {bulk }}}{\text { WIDTH }}\right)}{2 * V_{\text {bulk }}}
$$

- The block calculates $V_{\text {bulk }}$ as follows:
- If $V_{B S} \leq 0, V_{\text {bulk }}=\mathrm{PHI}-V_{B S}$.
- Otherwise, the block calculates $V_{\text {bulk }}$ using the following equation:

$$
V_{\text {bulk }}=\frac{P H I}{\left(1+\frac{V_{B S}}{2 * P H I}\right)^{2}}
$$

- $V_{T}=k T / q$
- The block calculates $V_{T H}$ using the equation following equation:

$$
\begin{aligned}
V_{T H}= & V_{B I}-\frac{8.15 e^{-22} * E T A}{C O X *(L E N G T H-2 * L D)^{3}} * V_{D S} \\
& +G A M M A * F_{s} * \sqrt{V_{\text {bulk }}}+F_{n} * V_{\text {bulk }}
\end{aligned}
$$

- For information about how the block calculates $V_{B D}$, see "Temperature Dependence" on page 2-444.
- ETA is the Vds dependence threshold volt, ETA parameter value.
- $C O X=\varepsilon_{o x} / T O X$, where $\varepsilon_{o x}$ is the permittivity of the oxide and $T O X$ is the Oxide thickness, TOX parameter value.

SPICE NMOS

- If you specify a nonzero value for the Junction depth, XJ parameter and a value for the Substrate doping, NSUB parameter, the block calculates F_{s} using the following equations:

$$
\begin{aligned}
\alpha= & \frac{2 \varepsilon_{s i}}{q N S U B} \\
X D= & \sqrt{\alpha} \\
w c= & .0631353+.8013292 * \frac{X D^{*} \sqrt{V_{\text {bulk }}}}{X J} \\
& -.01110777 *\left(\frac{X D^{*} \sqrt{V_{\text {bulk }}}}{X J}\right)^{2}+\frac{L D}{X J} \\
F_{s}= & 1-\left(w c^{*} \sqrt{1-\left(\frac{X D^{*} \sqrt{V_{\text {bulk }}}}{X J+X D^{*} \sqrt{V_{\text {bulk }}}}\right)^{2}}-\frac{L D}{X J}\right)
\end{aligned}
$$

where $\varepsilon_{s i}$ is the permittivity of silicon.
Otherwise, $F_{s}=1$.

- The block calculates F_{B} using the following equation:

$$
F_{B}=\frac{G A M M A^{*} F_{s}}{4^{*} \sqrt{V_{\text {bulk }}}}+F_{n}
$$

- The block calculates F_{n} using the following equation:

$$
F_{n}=\frac{D E L T A * \pi * \varepsilon_{s i}}{2 * C O X * W I D T H}
$$

- DELTA is the Width effect on threshold, DELTA parameter value.
- $V_{D S X}$ is the lesser of $V_{D S}$ and the saturation voltage, $V_{d s a t}$.
- If you specify a positive value for the Max carrier drift velocity, VMAX parameter, the block calculates $V_{d s a t}$ using the following equation:

$$
\begin{aligned}
V_{d s a t}= & \frac{V_{g s x}-V_{T H}}{1+F_{B}}+\frac{(L E N G T H-2 * L D) * V M A X}{U O^{*} F_{g a t e}} \\
& -\sqrt{\left(\frac{V_{g s x}-V_{T H}}{1+F_{B}}\right)^{2}+\left(\frac{(L E N G T H-2 * L D) * V M A X}{U O^{*} F_{g a t e}}\right)^{2}}
\end{aligned}
$$

Otherwise, the block calculates $V_{d s a t}$ using the following equation:

$$
V_{d s a t}=\frac{V_{g s x}-V_{T H}}{1+F_{B}}
$$

Velocity Saturation Scaling

If you specify a positive value for the Max carrier drift velocity, VMAX parameter, the block calculates $S c a l e_{V M A X}$ using the following equation:

$$
\text { Scale }_{V M A X}=\frac{1}{1+\frac{U O^{*} F_{\text {gate }}}{(L E N G T H-2 * L D) * V M A X} * V_{D S X}}
$$

Otherwise, Scale $_{\text {VMAX }}=1$.

Channel Length Modulation Scaling

The block scales the drain current to account for channel length modulation if the block meets all of the following criteria:

- $V_{D S}>V_{s a t}$

SPICE NMOS

- The Max carrier drift velocity, VMAX parameter value is zero or a is nonzero.

The block scales the drain current using the following equation:

$$
\text { Scale }_{\text {LChan }}=\frac{1}{1-\frac{\Delta l}{\left(L E N G T H-2^{*} L D\right)}}
$$

The block uses the following procedure to calculate Δl :
1 The block first calculates the intermediate value Δl_{0}.

- If you specify a positive value for the Max carrier drift velocity, VMAX parameter, the block computes the intermediate value $g_{\text {dsat }}$ as the greater of $1 \mathrm{e}-12$ and the result of the following equation:

$$
I_{D S O} *\left(1-\frac{1}{1+\text { Scale }_{g_{\text {dsat }}} * V_{D S X}}\right) * \text { Scale }_{g_{\text {dsat }}}
$$

where:

$$
\text { Scale }_{g_{\text {dsat }}}=\frac{U O * F_{\text {gate }}}{(L E N G T H-2 * L D) * V M A X}
$$

Then, the block uses the following equation to calculate the intermediate value Δl_{0} :

$$
\begin{aligned}
\Delta l_{0}= & \sqrt{\left(\frac{K A * I_{D S}}{2 *(L E N G T H-2 * L D) * g_{d s a t}}\right)^{2}+K A *\left(V_{D S}-V_{d s a t}\right)} \\
& -\frac{K A * I_{D S}}{2 *(L E N G T H-2 * L D) * g_{\text {dsat }}}
\end{aligned}
$$

SPICE NMOS

where $K A$ is the product of the Mobility modulation, KAPPA parameter value and a.

- Otherwise, the block uses the following equation to calculate the intermediate value Δl_{0} :

$$
\Delta l=\sqrt{K A^{*}\left(V_{D S}-V_{d s a t}\right)}
$$

2 The block checks for punch through and calculates Δl.

- If Δl_{0} is greater than (LENGTH-2* $\left.L D\right) / 2$, the block calculates Δl using the following equation:

$$
\Delta l=\left(1-\frac{(\text { LENGTH }-2 * L D)}{4 * \Delta l_{0}}\right) *(\text { LENGTH }-2 * L D)
$$

- Otherwise, $\Delta l=\Delta l_{0}$.

Weak Inversion Scaling

If $V_{G S}$ is less than $V_{o n}$, the block calculates $S c a l e_{I N V}$ using the following equation:

$$
\text { Scale }_{I N V}=e^{\frac{V_{g 5}-V_{o n}}{x_{n}^{*} V_{T}}}
$$

Otherwise, Scale $_{\text {INV }}=1$.

Junction Charge Model

The block models the following junction charges:

- Junction Overlap Charges
- Bulk Junction Charges

Junction Overlap Charges

The block calculates the following junction overlap charges:

SPICE NMOS

- $Q_{G S}=C G S O^{*}$ WIDTH* $V_{g s}$

Where:

- $Q_{G S}$ is the gate-source overlap charge.
- CGSO is the G-S overlap capacitance, CGSO parameter value.
- WIDTH is the Width of channel, WIDTH parameter value.
- $Q_{G D}=C G D O^{*} W I D T H^{*} V_{g d}$

Where:

- $Q_{G D}$ is the gate-drain overlap charge.
- CGDO is the G-D overlap capacitance, CGDO parameter value.
- $Q_{G B}=C G B O^{*}\left(L E N G T H-2^{*} L D\right)^{*} V_{g b}$

Where:

- $Q_{G B}$ is the gate-bulk overlap charge.
- CGBO is the G-B overlap capacitance, CGBO parameter value.
- LENGTH is the Length of channel, LENGTH parameter value.
- $L D$ is the Lateral diffusion, LD parameter value.

Bulk Junction Charges

The block provides the following relationship between the bulk-drain bottom junction charge $Q_{\text {bottom }}$ and the junction voltage $V_{b d}$ after adjusting the applicable model parameters for temperature.

SPICE NMOS

Applicable Range of $\boldsymbol{V}_{\text {bd }}$ Values	Corresponding $\mathbf{Q}_{\text {bottom }}$ Equation
$V_{b d}<F C * P B$	$Q_{\text {bottom }}=\frac{C B D^{*} P B *\left(1-\left(1-\frac{V_{b d}}{P B}\right)^{1-M J}\right)}{1-M J} \text { if } C B D>0 .$
$V_{b d} \geq F C * P B$	$\begin{aligned} & Q_{\text {botom }}=C B D^{*} \\ & \\ & \left(F 1+\frac{F 3^{*}\left(V_{b d}-F C * P B\right)+\frac{M J *\left(V_{b d}^{2}-(F C * P B)^{2}\right)}{2 * P B}}{F 2}\right) \end{aligned}$ if $C B D>0$. $\left.\begin{array}{rl} Q_{\text {botom }}=C J * A D^{*} \\ & \left(F 1+\frac{F 3 *\left(V_{b d}-F C * P B\right)+\frac{M J *\left(V_{b d}^{2}-(F C * P B)^{2}\right)}{2 * P B}}{F 2}\right. \end{array}\right)$ otherwise.

SPICE NMOS

Where:

- $P B$ is the Bulk junction potential, $\mathbf{P B}$ parameter value.
- $F C$ is the Capacitance coefficient FC parameter value.
- $C B D$ is the Zero-bias BD capacitance, CBD parameter value.
- $C J$ is the Bottom junction cap per area, CJ parameter value.
- $A D$ is the Area of drain, AD parameter value.
- MJ is the Bottom grading coefficient, MJ parameter value.
- $F 1=\frac{P B^{*}\left(1-(1-F C)^{1-M J}\right)}{1-M J}$
- $F 2=(1-F C)^{1+M J}$
- $F 3=1-F C *(1+M J)$

The block uses the equations in the preceding table to calculate the bulk-source bottom junction charge, with the following substitutions:

- $V_{b s}$ replaces $V_{b d}$.
- $A S$ (the Area of source, AS parameter value) replaces $A D$.
- CBS (the Zero-bias BS capacitance, CBS parameter value) replaces $C B D$.

The block provides the following relationship between the bulk-drain sidewall junction charge $Q_{\text {sidewall }}$ and the junction voltage $V_{b d}$ after adjusting the applicable model parameters for temperature.

SPICE NMOS

Applicable Range of $\boldsymbol{V}_{\mathbf{b d}}$ Values	Corresponding $\mathbf{Q}_{\text {sidewall }}$ Equation
$V_{b d}<F C * P B$	$Q_{\text {sidewall }}=\frac{C J S W * P D * P B *\left(1-\left(1-\frac{V_{b d}}{P B}\right)^{1-M G S W}\right)}{1-M G S W}$
$V_{b d} \geq F C * P B$	$Q_{\text {sidewall }}=C J S W^{*} P D^{*}$
$\left(\begin{array}{c}F 1+\frac{F 3 *\left(V_{b d}-F C * P B\right)+\frac{M G S W *\left(V_{b d}^{2}-(F C * P B)^{2}\right)}{2 * P B}}{F 2}\end{array}\right.$	

Where:

- $C J S W$ is the Side jct cap/area of jet perimeter, CJSW parameter value.
- $P D$ is the Perimeter of drain, AD parameter value.
- MGSW is the Side grading coefficient, MJSW parameter value.
- $F 1=\frac{P B^{*}\left(1-(1-F C)^{1-M J S W}\right)}{1-M J S W}$
- $F 2=(1-F C)^{1+M J S W}$
- $F 3=1-F C *(1+M J S W)$

SPICE NMOS

The block uses the equations in the preceding table to calculate the bulk-source sidewall junction charge and the sidewall junction voltage, with the following substitutions:

- $V_{b s}$ replaces $V_{b d}$.
- $P S$ (the Perimeter of source, PS parameter value) replaces $P D$.

Temperature Dependence

Several transistor parameters depend on temperature. There are two ways to specify the transistor temperature:

- When you select Device temperature for the Model temperature dependence using parameter, the transistor temperature is

$$
T=T_{C}+T_{O}
$$

where:

- T_{C} is the Circuit temperature parameter value from the SPICE Environment Parameters block. If this block doesn't exist in the circuit, T_{C} is the default value of this parameter.
- T_{O} is the Offset local circuit temperature, TOFFSET parameter value.
- When you select Fixed temperature for the Model temperature dependence using parameter, the transistor temperature is the Fixed circuit temperature, TFIXED parameter value.

The block provides the following relationship between the transconductance $K P$ and the transistor temperature T :

$$
K P(T)=\frac{K P}{\left(T / T_{\text {meas }}\right)^{3 / 2}}
$$

where:

SPICE NMOS

- KP is the Transconductance, KP parameter value.
- $T_{\text {meas }}$ is the Parameter extraction temperature, TMEAS parameter value.

The block provides the following relationship between the surface potential PHI and the transistor temperature T :

$$
\begin{gathered}
\operatorname{PHI}(T)=\frac{T}{T_{\text {meas }}}\left(\operatorname{PHI}+\frac{k T_{\text {meas }}}{q}\left(\log \left(\frac{T_{\text {meas }}}{300.15}\right)^{3}+\frac{q}{k}\left(\frac{1.115}{300.15}-\frac{E G_{T_{\text {meas }}}}{T_{\text {meas }}}\right)\right)\right) \\
\quad-\frac{k T}{q}\left(\log \left(\frac{T}{300.15}\right)^{3}+\frac{q}{k}\left(\frac{1.115}{300.15}-\frac{E G_{T}}{T}\right)\right)
\end{gathered}
$$

where:

- $E G_{T_{\text {meas }}}=1.16 \mathrm{eV}-\left(7.02 e-4 * T_{\text {meas }}{ }^{2}\right) /\left(T_{\text {meas }}+1108\right)$
- $E G_{T}=1.16 e V-\left(7.02 e-4 * T^{2}\right) /(T+1108)$

The block provides the following relationship between the built-in voltage VBI and the transistor temperature T :

$$
\begin{aligned}
V B I(T)=V T O & +M T Y P E *\left(\frac{P H I(T)-P H I}{2}-G A M M A \sqrt{P H I}\right) \\
& +\frac{E G_{T_{\text {meas }}}-E G_{T}}{2}
\end{aligned}
$$

where:

- $V T O$ is:
- The Threshold voltage, VTO parameter value, if this parameter has a numerical value.

SPICE NMOS

- $\Phi-3.25+E G_{T_{\text {meas }}} / 2+$ MTYPE *PHI $/ 2-$ NSS * $q *$ TOX $/\left(3.9 * \varepsilon_{0}\right)$ + MTYPE $*(G A M M A * \sqrt{P H I}+P H I)$, if Threshold voltage, VTO is NaN and you specify values for both the Oxide thickness, TOX and Substrate doping, NSUB parameters.
- Φ is:
- 3.2, if $T P G$ (the Gate type?, TPG parameter value) is 0.
- $3.25+E G_{T_{\text {meas }}} / 2-M T Y P E * T P G * E G_{T_{\text {meas }}} / 2$, otherwise.
- GAMMA is:
- The Bulk threshold, GAMMA parameter value, if this parameter has a numerical value.
- TOX $* \sqrt{2 * 11.7 * \varepsilon_{0} * q * N S U B} /\left(3.9 * \varepsilon_{0}\right)$, if Bulk threshold, GAMMA is NaN and you specify values for both the Oxide thickness, TOX and Substrate doping, NSUB parameters.

The block provides the following relationship between the bulk saturation current $I S$ and the transistor temperature T :

$$
I S(T)=I S * e^{\frac{-q E G_{T}}{N D^{*} k T}+\frac{q E G_{T_{\text {meas }}}}{N D^{*} k T_{\text {meas }}}}
$$

where:

- $N D$ is the Emission coefficient, ND parameter value.
- $I S$ is the Bulk saturation current, IS parameter value.

The block provides the following relationship between the bulk junction saturation current density $J S$ and the transistor temperature T :

$$
J S(T)=J S * e^{\frac{-q E G_{T}}{N D}+k T}+\frac{q E G_{I_{\text {meas }}}}{N D * K T_{\text {meas }}}
$$

SPICE NMOS

where:

- JS is the Bulk jct sat current density, JS parameter value.

The block provides the following relationship between the bulk junction potential $P B$ and the transistor temperature T :

$$
P B(T)=\frac{P B+\frac{k T_{\text {meas }}}{q}\left(\log \left(\frac{T_{\text {meas }}}{300.15}\right)^{3}+\frac{q}{k}\left(\frac{1.115}{300.15}-\frac{E G_{T_{\text {meas }}}}{T}\right)\right)}{T_{\text {meas }} / T},
$$

where:

- $P B$ is the Bulk junction potential, $\mathbf{P B}$ parameter value.

The block provides the following relationship between the bulk-drain junction capacitance $C B D$ and the transistor temperature T :

$$
C B D(T)=C B D \frac{p b o+M J *\left(4 * 10^{4} *(T-300.15) * p b o-(P B(T)-p b o)\right)}{p b o+M J *\left(4 * 10^{4} *\left(T_{\text {meas }}-300.15\right) * p b o-(P B-p b o)\right)}
$$

where:

- $C B D$ is the Zero-bias BD capacitance, CBD parameter value.
- MJ is the Bottom grading coefficient, MJ parameter value.
- $\left.p b o=\frac{\frac{k T}{q}\left(\frac{1}{300.15}\right) k(300.15}{\left.-\frac{c}{T}\right)}\right)$

SPICE NMOS

The block uses the $C B D(T)$ equation to calculate:

- The bulk-source junction capacitance by substituting $C B S$ (the Zero-bias BS capacitance, CBS parameter value) for $C B D$.
- The bottom junction capacitance by substituting $C J$ (the Bottom junction cap per area, CJ parameter value) for $C B D$.

The block provides the following relationship between the sidewall junction capacitance $C J S W$ and the transistor temperature T :

$$
\operatorname{CJSW}(T)=C J S W \frac{p b o+M J S W *\left(4 * 10^{4} *(T-300.15) * p b o-(P B(T)-p b o)\right)}{p b o+M J S W *\left(4 * 10^{4} *\left(T_{\text {meas }}-300.15\right) * p b o-(P B-p b o)\right)}
$$

where:

- MJSW is the Side grading coefficient, MJSW parameter value.

Basic Assumptions and Limitations

The model is based on the following assumptions:

- The NMOS block does not support noise analysis.
- The NMOS block applies initial conditions across junction capacitors and not across the block ports.

SPICE NMOS

Dialog
 Box and Parameters

Model Selection Tab

MOS model

Select one of the following MOSFET model options:

- Level 1 MOS - Use the "Level 1 Drain Current Model" on page $2-430$. This is the default option.
- Level 3 MOS - Use the "Level 3 Drain Current Model" on page 2-433.

SPICE NMOS

Dimensions Tab

國Block Parameters: SPICE NMOS									
SPICE NMOS This model approximates a SPICE level 1 or 3 nMOSFET. You specify both model card and instance parameters as instance parameters on this mask. The instance parameter OFF and noise model parameters KF and AF are not supported. SCALE is the number of parallel MOS instances for this device. SCALE multiplies the output current and device charge directly. This differs from the AREA parameter, which multiples the device parameters KP, IS, JS, CBD, CBS, CGSO, CGDO, CGBO, CJ and CJSW and divides the parameters RD, RS and RSH. You can set the MOS temperature to a fixed temperature or to the circuit temperature (from the SPICE Environment Parameters block) plus TOFFSET. The block lets you include or exclude capacitance modeling and initial conditions. The initial conditions ICVDS, ICVGS and ICVBS are the voltages across the internal junctions, and are only effective when the corresponding junction capacitances are present. If physical parameters VTO, $\mathrm{KP}, \mathrm{PHI}$, or GAMMA are assigned a NaN value, they will be calculated from specified process parameters TOX and NSUB. Parameters RD, RS or RSH are not used in block calculations when their value is NaN .									
Parameters									
Model Selection	Dimensions	Resistors	DC currents	C-V	Process	Tempe			
Device area factor, AREA: 1									
Number parallel devices, SCALE:									
Length of channel, LENGTH:		$1 \mathrm{e}-4$						\square	
Width of channel, WIDTH:		$1 \mathrm{e}-4$					m	\square	
Area of drain, AD:		0					$\mathrm{m}^{\wedge} 2$	\checkmark	
Area of source, AS:		0					$\mathrm{m}^{\wedge} 2$	\square	
Perimeter of drain, PD:		0					m	\square	
Perimeter of source, PS:		0					m	\square	
					K	Cancel	Help	Apply	

Device area factor, AREA

The transistor area. This value multiplies the following parameter values:

- Transconductance, KP
- Bulk saturation current, IS
- Bulk jet sat current density, JS
- Zero-bias BD capacitance, CBD

SPICE NMOS

- Zero-bias BS capacitance, CBS
- G-S overlap capacitance, CGSO
- G-D overlap capacitance, CGDO
- G-B overlap capacitance, CGBO
- Bottom junction cap per area CJ
- Side jct cap/area of jct perimeter CJSW

It divides the following parameter values:

- Drain resistance, RD
- Source resistance, RS
- Sheet resistance, RSH

The default value is 1 . The value must be greater than 0 .

Number of parallel devices, SCALE

The number of parallel MOS instances for this device. This parameter multiplies the output current and device charge. The default value is 1 . The value must be greater than 0 .

Length of channel, LENGTH

Length of the channel between the source and drain. The default value is $1 \mathrm{e}-04 \mathrm{~m}$.

Width of channel, WIDTH

Width of the channel between the source and drain. The default value is $1 \mathrm{e}-04 \mathrm{~m}$.

Area of drain, AD
Area of the transistor drain diffusion. The default value is $0 \mathrm{~m}^{2}$. The value must be greater than or equal to 0 .

Area of source, AS

Area of the transistor source diffusion. The default value is $0 \mathrm{~m}^{2}$. The value must be greater than or equal to 0 .

SPICE NMOS

Perimeter of drain, PD

Perimeter of the transistor drain diffusion. The default value is 0 m .

Perimeter of source, PS

Perimeter of the transistor source diffusion. The default value is 0 m .

Resistors Tab

Abstract

Block Parameters: SPICE NMOS

This model approximates a SPICE level 1 or 3 nMOSFET. You specify both model card and instance parameters as instance parameters on this mask. The instance parameter OFF and noise model parameters KF and AF are not supported. SCALE is the number of parallel MOS instances for this device. SCALE multiplies the output current and device charge directly. This differs from the AREA parameter, which multiples the device parameters $\mathrm{KP}, \mathrm{IS}, \mathrm{JS}, \mathrm{CBD}, \mathrm{CBS}, \mathrm{CGSO}, \mathrm{CGDO}, \mathrm{CGBO}, \mathrm{CJ}$ and CJSW and divides the parameters RD, RS and RSH.

You can set the MOS temperature to a fixed temperature or to the circuit temperature (from the SPICE Environment Parameters block) plus TOFFSET. The block lets you include or exclude capacitance modeling and initial conditions. The initial conditions ICVDS, ICVGS and ICVBS are the voltages across the internal junctions, and are only effective when the corresponding junction capacitances are present. If physical parameters VTO, KP, PHI, or GAMMA are assigned a NaN value, they will be calculated from specified process parameters TOX and NSUB. Parameters RD, RS or RSH are not used in block calculations when their value is NaN.

SPICE NMOS

Drain resistance, RD

The transistor drain ohmic resistance. The default value is 0.01Ω. If you set this parameter to $\mathrm{NaN} \Omega$, this value means the parameter is unspecified, so the block calculates the drain resistance as described in "Resistance Calculations" on page $2-427$. The value must be equal to 0 or greater than or equal to Rmin. Rmin is a built-in model constant whose value is $1 \mathrm{e}-12$.

Source resistance, RS

The transistor source ohmic resistance. The default value is $1 \mathrm{e}-4 \Omega$. If you set this parameter to $\mathrm{NaN} \Omega$, this value means the parameter is unspecified, so the block calculates the drain resistance as described in "Resistance Calculations" on page $2-427$. The value must be equal to 0 or greater than or equal to Rmin. Rmin is a built-in model constant whose value is $1 \mathrm{e}-12$.

Sheet resistance, RSH

Resistance per square of the transistor source and drain. The default value is $N a N \Omega$. This value means the parameter is unspecified. The block only uses this parameter value if you do not specify one or both of the Drain resistance, RD and Source resistance, RS parameter values, as described in "Resistance Calculations" on page 2-427. The value must be greater than or equal to 0 .

Number of drain squares, NRD

Number of squares of resistance that make up the transistor drain diffusion. The default value is 1 . The value must be greater than or equal to 0 . The block only uses this parameter value if you do not specify one or both of the Drain resistance, RD and Source resistance, RS parameter values, as described in "Resistance Calculations" on page 2-427.

Number of source squares, NRS

Number of squares of resistance that make up the transistor source diffusion. The default value is 1 . The value must be greater than or equal to 0 . The block only uses this parameter value if you do not specify one or both of the Drain resistance,

SPICE NMOS

RD and Source resistance, RS parameter values, as described in "Resistance Calculations" on page 2-427.

DC Currents Tab

Threshold voltage, VTO

The gate-source voltage above which the transistor produces a nonzero drain current. The default value is 0 V . If you assign this parameter a value of NaN , the block calculates the value from the specified values of the Oxide thickness, TOX and Substrate

SPICE NMOS

doping, NSUB parameters. For more information about this calculation, see "Temperature Dependence" on page 2-444.

Transconductance, KP

The derivative of drain current with respect to gate voltage. The default value is $2 \mathrm{e}-05 \mathrm{~A} / \mathrm{V}^{2}$. The value must be greater than or equal to 0 . If you assign this parameter a value of NaN , the block calculates the value from the specified values of the Oxide thickness, TOX and Substrate doping, NSUB parameters. For more information about this calculation, see "Level 1 Drain Current Model" on page 2-430 or "Level 3 Drain Current Model" on page 2-433 as appropriate for the selected value of the MOS model parameter.

Bulk threshold, GAMMA

Body effect parameter, which relates the threshold voltage, VTH, to the body bias, VBS, as described in "Level 1 Drain Current Model" on page 2-430 and "Level 3 Drain Current Model" on page
$2-433$. The default value is $0 \sqrt{V}$. The value must be greater than or equal to 0 . If you assign this parameter a value of NaN , the block calculates the value from the specified values of the Oxide thickness, TOX and Substrate doping, NSUB parameters. For more information about this calculation, see "Level 1 Drain Current Model" on page 2-430 or "Level 3 Drain Current Model" on page 2-433 as appropriate for the selected value of the MOS model parameter.

Surface potential, PHI

Twice the voltage at which the surface electron concentration becomes equal to the intrinsic concentration and the device transitions between depletion and inversion conditions. The default value is 0.6 V . The value must be greater than or equal to 0 . If you assign this parameter a value of NaN, the block calculates the value from the specified values of the Oxide thickness, TOX and Substrate doping, NSUB parameters. For more information about this calculation, see "Level 1 Drain Current Model" on page 2-430 or "Level 3 Drain Current Model" on page

SPICE NMOS

2-433 as appropriate for the selected value of the MOS model parameter.

Channel modulation, LAMBDA

The channel-length modulation. This parameter is only visible when you select Level 1 MOS for the MOS model parameter. The default value is $01 / \mathrm{V}$.

Bulk saturation current, IS

The magnitude of the current that the junction approaches asymptotically for very large reverse bias levels. The default value is $1 \mathrm{e}-14 \mathrm{~A}$. The value must be greater than or equal to 0 .

Bulk jet sat current density, JS

The magnitude of the current per unit area that the junction approaches asymptotically for very large reverse bias levels. The default value is $0 \mathrm{~A} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

Emission coefficient, ND

The transistor emission coefficient or ideality factor. The default value is 1 . The value must be greater than 0 .

Width effect on threshold, DELTA

The factor that controls the effect of transistor width on threshold voltage. This parameter is only visible when you select Level 3 MOS for the MOS model parameter. The default value is 0 .

Max carrier drift velocity, VMAX

The maximum drift velocity of the carriers. This parameter is only visible when you select Level 3 MOS for the MOS model parameter. The default value is $0 \mathrm{~m} / \mathrm{s}$.

Fast surface state density, NFS

The fast surface state density adjusts the drain current for the mobility reduction caused by the gate voltage. This parameter is only visible when you select Level 3 MOS for the MOS model parameter. The default value is $01 / \mathrm{cm}^{2}$.

SPICE NMOS

Vds dependence threshold volt, ETA

The coefficient that controls how the threshold voltage depends on the drain-source voltage in the drain current calculation. This parameter is only visible when you select Level 3 MOS for the MOS model parameter. The default value is 0 .

Vgs dependence on mobility, THETA

The coefficient that controls how the mobility affects the gate voltage in the drain current calculation. This parameter is only visible when you select Level 3 MOS for the MOS model parameter. The default value is $01 / \mathrm{V}$.

Mobility modulation, KAPPA

The coefficient that controls how the mobility affects the channel length in the drain current calculation. This parameter is only visible when you select Level 3 MOS for the MOS model parameter. The default value is 0.2 .

SPICE NMOS

C-V Tab

Abstract

Block Parameters: SPICE NMOS

This model approximates a SPICE level 1 or 3 nMOSFET. You specify both model card and instance parameters as instance parameters on this mask. The instance parameter OFF and noise model parameters KF and AF are not supported. SCALE is the number of parallel MOS instances for this device. SCALE multiplies the output current and device charge directly. This differs from the AREA parameter, which multiples the device parameters $\mathrm{KP}, \mathrm{IS}, \mathrm{JS}, \mathrm{CBD}, \mathrm{CBS}, \mathrm{CGSO}, \mathrm{CGDO}, \mathrm{CGBO}, \mathrm{CJ}$ and $\mathrm{CJ5W}$ and divides the parameters RD, RS and RSH.

You can set the MOS temperature to a fixed temperature or to the circuit temperature (from the SPICE Environment Parameters block) plus TOFFSET. The block lets you include or exclude capacitance modeling and initial conditions. The initial conditions ICVDS, ICVGS and ICVBS are the voltages across the internal junctions, and are only effective when the corresponding junction capacitances are present. If physical parameters VTO, KP, PHI, or GAMMA are assigned a NaN value, they will be calculated from specified process parameters TOX and NSUB. Parameters RD, RS or RSH are not used in block calculations when their value is NaN .

Parameters

Model Selection	Dimensions	Resistors	DC currents	C-V	Process

Model junction capacitance

Select one of the following options for modeling the junction capacitance:

- No - Do not include junction capacitance in the model. This is the default option.
- Yes - Specify zero-bias junction capacitance, junction potential, grading coefficient, forward-bias depletion and capacitance coefficient.

SPICE NMOS

G-S overlap capacitance, CGSO

Gate-source capacitance due to the diffusion that occurs when the device operates in depletion mode. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is $0 \mathrm{~F} / \mathrm{m}$. The value must be equal to 0 or greater than or equal to Cmin. Cmin is a built-in model constant whose value is $1 \mathrm{e}-18$.

G-D overlap capacitance, CGDO

Gate-drain capacitance due to the diffusion that occurs when the device operates in depletion mode. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is $0 \mathrm{~F} / \mathrm{m}$. The value must be equal to 0 or greater than or equal to Cmin. Cmin is a built-in model constant whose value is $1 \mathrm{e}-18$.

G-B overlap capacitance, CGBO

Gate-base capacitance due to the diffusion that occurs when the device operates in depletion mode. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is $0 \mathrm{~F} / \mathrm{m}$. The value must be equal to 0 or greater than or equal to Cmin. Cmin is a built-in model constant whose value is $1 \mathrm{e}-18$.

Zero-bias BD capacitance, CBD

The value of the capacitance placed between the base and the drain. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 0 F . The value must be equal to 0 or greater than or equal to Cmin. Cmin is a built-in model constant whose value is $1 \mathrm{e}-18$.

Zero-bias BS capacitance, CBS

The value of the capacitance placed between the base and the source. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 0 F . The value must be equal to 0 or greater than or equal to Cmin. Cmin is a built-in model constant whose value is 1e-18.

SPICE NMOS

Bottom junction cap per area CJ

Zero-bias bulk junction bottom capacitance per junction area. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is $0 \mathrm{~F} / \mathrm{m}^{2}$. The value must be equal to 0 or greater than or equal to Cmin. Cmin is a built-in model constant whose value is $1 \mathrm{e}-18$.

Bottom grading coefficient, MJ

The transistor bottom grading coefficient. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 0.5 . The value must be equal to 0 or less than MGmax. MGmax is a built-in model constant whose value is 0.9 .

Side jet cap/area of jet perimeter CJSW

Zero-bias bulk junction sidewall capacitance per junction perimeter. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is $0 \mathrm{~F} / \mathrm{m}$. The value must be equal to 0 or greater than or equal to Cmin. Cmin is a built-in model constant whose value is $1 \mathrm{e}-18$.

Side grading coefficient, MJSW

The transistor sidewall grading coefficient. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 0.5 . The value must be equal to 0 or less than MGmax. MGmax is a built-in model constant whose value is 0.9 .

Bulk junction potential, PB
The potential across the bulk junction. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 0.8 V . The value must be equal to 0 or greater than or equal to VJmin. VJmin is a built-in model constant whose value is 0.01 .

Capacitance coefficient FC

The fitting coefficient that quantifies the decrease of the depletion capacitance with applied voltage. This parameter is only visible when you select Yes for the Model junction capacitance

SPICE NMOS

parameter. The default value is 0.5 . The value must be equal to 0 or less than or equal to FCmax. FCmax is a built-in model constant whose value is 0.95 .

Specify initial condition

Select one of the following options for specifying an initial condition:

- No - Do not specify an initial condition for the model. This is the default option.
- Yes - Specify the initial diode voltage.

Note The NMOS block applies the initial diode voltage across the junction capacitors and not across the ports.

Initial condition voltage ICVDS

Drain-source voltage at the start of the simulation. This parameter is only visible when you select Yes for the Model junction capacitance and $Y e s$ for the Specify initial condition parameter. The default value is 0 V .

Initial condition voltage ICVGS

Gate-source voltage at the start of the simulation. This parameter is only visible when you select Yes for the Model junction capacitance and Yes for the Specify initial condition parameter. The default value is 0 V .

Initial condition voltage ICVBS

Bulk-source voltage at the start of the simulation. This parameter is only visible when you select Yes for the Model junction capacitance and Yes for the Specify initial condition parameter. The default value is 0 V .

SPICE NMOS

Process Tab

Oxide thickness, TOX

Thickness of the gate oxide. The default value is NaN m. The value must be greater than or equal to 0 .

Note When you select Level 3 MOS for the MOS model parameter, the block uses a value of 1e-7 rather than NaN by default.

SPICE NMOS

Lateral diffusion, LD

Length of lateral diffusion. The default value is 0 m .

Substrate doping, NSUB

Substrate doping. The default value is $\mathrm{NaN} 1 / \mathrm{cm}^{3}$. The value must be greater than or equal to 1.45 e 10 (the carrier concentration of intrinsic silicon).

Surface state density, NSS

Substrate doping. The default value is $01 / \mathrm{cm}^{2}$.
Surface mobility, U0
Zero-bias surface mobility coefficient. The default value is 600 $\mathrm{cm}^{2} / \mathrm{V} / \mathrm{s}$.

Junction depth, XJ

Junction depth. This parameter is only visible when you select Level 3 MOS for the MOS model parameter. The default value is 0 m .

Gate type?,TPG

Select one of the following MOSFET gate materials (as compared to the substrate):

- Opposite of substrate - The gate material is the opposite of the substrate. This means that TPG $=1$ in the device equations. This is the default option.
- Same as substrate - The gate material is the same as the substrate. This means that TPG $=-1$ in the device equations.
- Aluminum - The gate material is aluminum. This means that TPG $=0$ in the device equations.

SPICE NMOS

Temperature Tab

Model temperature dependence using

Select one of the following options for modeling the diode temperature dependence:

- Device temperature - Use the device temperature, which is the Circuit temperature value plus the Offset local circuit temperature, TOFFSET value. The Circuit temperature value comes from the SPICE Environment Parameters block, if

SPICE NMOS

one exists in the circuit. Otherwise, it comes from the default value for this block.

- Fixed temperature - Use a temperature that is independent of the circuit temperature to model temperature dependence.

Offset local circuit temperature, TOFFSET

The amount by which the transistor temperature differs from the circuit temperature. This parameter is only visible when you select Device temperature for the Model temperature dependence using parameter. The default value is 0 K .

Fixed circuit temperature, TFIXED
The temperature at which to simulate the transistor. This parameter is only visible when you select Fixed temperature for the Model temperature dependence using parameter. The default value is 300.15 K . The value must be greater than 0 .

Parameter extraction temperature, TMEAS

The temperature at which the transistor parameters were measured. The default value is 300.15 K . The value must be greater than 0 .

Ports The block has the following ports:

G
Electrical conserving port associated with the transistor gate terminal.

D
Electrical conserving port associated with the transistor drain terminal.

S
Electrical conserving port associated with the transistor source terminal.

B
Electrical conserving port associated with the transistor bulk terminal.

SPICE NMOS

References [1] G. Massobrio and P. Antognetti. Semiconductor Device Modeling with SPICE. 2nd Edition, McGraw-Hill, 1993. Chapter 3.

See Also SPICE PMOS

SPICE NPN

Purpose

Model Gummel-Poon NPN Transistor

Library

Description
SPICE-Compatible Components/Semiconductor Devices

The NPN block represents a SPICE-compatible four-terminal Gummel-Poon NPN transistor. The substrate port is connected to the transistor body using a capacitor, so these devices are equivalent to a three-terminal transistor when you connect the substrate port to any other port and use the default value of zero for the $\mathbf{C - S}$ junction capacitance, CJS parameter.

The NPN block model includes the following components:

- "Current-Voltage and Base Charge Model" on page 2-467
- "Base Resistance Model" on page 2-471
- "Transit Charge Modulation Model" on page 2-471
- "Junction Charge Model" on page 2-472
- "Temperature Dependence" on page 2-474

Current-Voltage and Base Charge Model

The current-voltage relationships and base charge relationships for the transistor are calculated adjusting the applicable model parameters for temperature as described in the following sections:

- Base-Emitter and Base-Collector Junction Currents on page 467
- Terminal Currents on page 470
- Base Charge Model on page 470

Base-Emitter and Base-Collector Junction Currents

The base-emitter junction current is calculated using the following equations:

- When $V_{B E}>80 * V_{T F}$:

SPICE NPN

$$
\begin{aligned}
& I_{b e f}=I S *\left(\left(\frac{V_{B E}}{V_{T F}}-79\right) * e^{80}-1\right)+G_{\min } * V_{B E} \\
& I_{b e e}=I S E *\left(\left(V_{B E}-80 * V_{T F}+V_{T E}\right) * \frac{e^{\left(80 * V_{T E} N_{T E}\right)}}{V_{T E}}-1\right)
\end{aligned}
$$

- When $V_{B E} \leq 80 * V_{T F}$

$$
\begin{aligned}
& I_{\text {bef }}=I S *\left(e^{\left(V_{B E} V_{T F}\right)}-1\right)+G_{\min } * V_{B E} \\
& I_{\text {bee }}=I S E *\left(e^{\left(V_{B E} V_{T E}\right)}-1\right)
\end{aligned}
$$

The base-collector junction current is calculated using the following equations:

- When $V_{B C}>80 * V_{T R}$:

$$
\begin{aligned}
& I_{b c r}=I S *\left(\left(\frac{V_{B C}}{V_{T R}}-79\right) * e^{80}-1\right)+G_{\min } * V_{B C} \\
& I_{b c c}=I S C *\left(\left(V_{B C}-80 * V_{T R}+V_{T C}\right) * \frac{e^{\left(80 * V_{T R} V_{T C}\right)}}{V_{T C}}-1\right)
\end{aligned}
$$

- When $V_{B C} \leq 80 * V_{T R}$

$$
\begin{aligned}
& I_{b c r}=I S *\left(e^{\left(V_{B C} V_{T R}\right)}-1\right)+G_{\min } * V_{B C} \\
& I_{b c c}=I S C *\left(e^{\left(V_{B C} V_{T C}\right)}-1\right)
\end{aligned}
$$

In the preceding equations:

SPICE NPN

- $V_{B E}$ is the base-emitter voltage and $V_{B C}$ is the base-collector voltage.
$V_{T E}=N E * k * T / q, V_{T C}=N C * k * T / q, V_{T F}=N F * k * T / q$, and
$V_{\text {TR }}=N R * k * T / q$.
- ISC and ISE are the B-C leakage current, ISC and B-E leakage current, ISE parameter values, respectively.
- $N E, N C, N F$, and $N R$ are the B-E emission coefficient, NE, B-C emission coefficient, NC, Forward emission coefficient, NF and Reverse emission coefficient, NR parameter values, respectively.
- q is the elementary charge on an electron.
- k is the Boltzmann constant.
- T is the transistor temperature:
- If you select Device temperature for the Model temperature dependence using parameter, T is the sum of the Circuit temperature value plus the Offset local circuit temperature, TOFFSET parameter value. The Circuit temperature value comes from the SPICE Environment Parameters block, if one exists in the circuit. Otherwise, it comes from the default value for this block.
- If you select Fixed temperature for the Model temperature dependence using parameter, T is the Fixed circuit temperature, TFIXED parameter value.
- $G_{\text {min }}$ is the minimum conductance. By default, $G_{\text {min }}$ matches the Minimum conductance GMIN parameter of the SPICE Environment Parameters block, whose default value is $1 \mathrm{e}-12$. To change $G_{m i n}$, add a SPICE Environment Parameters block to your model and set the Minimum conductance GMIN parameter to the desired value.

SPICE NPN

Terminal Currents

The terminal currents, I_{B} and I_{C} are the base and collector currents, defined as positive into the device. They are calculated as:

$$
\begin{aligned}
& I_{B}=-\left(\frac{I_{e b f}}{B F}+I_{e b e}+\frac{I_{c b r}}{B R}+I_{c b c}\right) \\
& I_{C}=-\left(\frac{I_{e b f}-I_{c b r}}{q_{b}}-\frac{I_{c b r}}{B R}-I_{\mathrm{cbc}}\right)
\end{aligned}
$$

where $B F$ and $B R$ are the Forward beta, BF and Reverse beta, BR parameter values, respectively.

Base Charge Model

The base charge, q_{b}, is calculated using the following equations:

$$
\begin{aligned}
& q_{b}=\frac{q_{1}}{2}\left(1+\sqrt{0.5^{*}\left(\sqrt{\left(1+4^{*} q_{2}-e p s\right)^{2}+e p s^{2}}+1+4^{*} q_{2}-e p s\right)+e p s}\right) \\
& q_{1}=\left(1-\frac{V_{B C}}{V A F}-\frac{V_{B E}}{V A R}\right)^{-1} \\
& q_{2}=\frac{I_{b e f}}{I K F}+\frac{I_{b c r}}{I K R}
\end{aligned}
$$

where

- $V A F$ and $V A R$ are the Forward Early voltage, VAF and Reverse Early voltage, VAR parameters, respectively.
- IKF and IKR are the Forward knee current, IKF and Reverse knee current, IKR parameter values, respectively.
- eps is $1 \mathrm{e}-4$.

Base Resistance Model

The block models base resistance in one of two ways:

- If you use the default value of infinity for the Half base resistance cur, IRB parameter, the NPN block calculates the base resistance $r_{b b}$ as

$$
r_{b b}=R B M+\frac{R B-R B M}{q_{b}}
$$

where:

- $R B M$ is the Minimum base resistance, RBM parameter value.
- $R B$ is the Zero-bias base resistance, RB parameter value.
- If you specify a finite value for the Half base resistance cur, IRB parameter, the NPN block calculates the base resistance $r_{b b}$ as

$$
r_{b b}=R B M+3 *(R B-R B M) *\left(\frac{\tan z-z}{z * \tan ^{2} z}\right)
$$

where

$$
z=\frac{\sqrt{1+144 I_{B} /\left(\pi^{2} I R B\right)}-1}{\left(24 / \pi^{2}\right) \sqrt{\left(I_{B} / I R B\right)}}
$$

Transit Charge Modulation Model

If you specify nonzero values for the Coefficient of TF, XTF parameter, the block models transit charge modulation by scaling the Forward transit time, TF parameter value as follows:

$$
T F_{\mathrm{mod}}=\frac{T F *\left[1+X T F * e^{V_{B C}\left(1.44 V_{T F}\right)}\left(\frac{I_{B E}}{I_{B E}+I T F}\right)^{2}\right]}{q_{b}}
$$

where ITF is the Coefficient of TF, ITF parameter value.

Junction Charge Model

The block lets you model junction charge. The base-collector charge $Q_{b c}$ and the base-emitter charge $Q_{b e}$ depend on an intermediate value, $Q_{d e p}$ as follows, after adjusting the applicable model parameters for temperature:

- For the internal base-emitter junctions:

$$
Q_{b e}=T F_{\text {mod }} * I_{b e}+Q_{d e p}
$$

- For the internal base-collector junctions:

$$
Q_{b c}=T R * I_{b c}+X C J C * Q_{d e p}
$$

- For the external base-collector junctions:

$$
Q_{b_{\text {exc }}}=(1-X C J C) * Q_{d e p}
$$

$Q_{d e p}$ depends on the junction voltage, $V_{j c t}\left(V_{B E}\right.$ for the base-emitter junction and $V_{B C}$ for the base-collector junction) as follows.

Applicable Range of $\boldsymbol{V}_{\text {ict }}$ Values	Corresponding $\mathbf{Q}_{\text {dep }}$ Equation
$V_{\text {jct }}<F C^{*} V J$	$Q_{d e p}=C_{j c t} * V J * \frac{1-\left(1-V_{j c t} / V J\right)^{(1-M J)}}{1-M J}$
$V_{\text {jct }} \geq F C^{*} V J$	$Q_{\text {dep }}=C_{j c t} *\left[F 1+\frac{F 3 *\left(V_{j c t}-F C * V J\right)+\frac{M J *\left[V_{j c t}{ }^{2}-(F C * V J)^{2}\right]}{2 * V J}}{F 2}\right]$

- $F C$ is the Capacitance coefficient FC parameter value.
- VJ is:
- The B-E built-in potential, VJE parameter value for the base-emitter junction.
- The B-C built-in potential, VJC parameter value for the base-collector junction.
- $M J$ is:
- The B-E exponential factor, MJE parameter value for the base-emitter junction.
- The B-C exponential factor, MJC parameter value for the base-collector junction.
- $C_{j c t}$ is:
- The B-E depletion capacitance, CJE parameter value for the base-emitter junction.

SPICE NPN

- The B-C depletion capacitance, CJC parameter value for the base-collector junction.
- $F 1=V J *\left(1-(1-F C)^{(1-M J)}\right) /(1-M J)$
- $F 2=(1-F C)^{(1+M J)}$
- $F 3=1-F C^{*}(1+M J)$

The collector-substrate charge $Q_{c s}$ depends on the collector-substrate voltage $V_{c s}$ as follows, after adjusting the applicable model parameters for temperature.

Applicable Range of $\boldsymbol{V}_{c s}$ Values	Corresponding $\mathbf{Q}_{c s}$ Equation
$V_{c s}<0$	$Q_{c s}=C J S * V J S *\left(\frac{1-\left(1-V_{c s} / V J S\right)^{(1-M J S)}}{1-M J S}\right)$
$V_{c s} \geq 0$	$Q_{c s}=C J S *\left(1+M J S * V_{c s} /(2 * V J S)\right) * V_{c s}$
where:	

- CJS is the C-S junction capacitance, CJS parameter value.
- VJS is the Substrate built-in potential, VJS parameter value.
- MJS is the Substrate exponential factor, MJS parameter value.

Temperature Dependence

Several transistor parameters depend on temperature. There are two ways to specify the transistor temperature:

- When you select Device temperature for the Model temperature dependence using parameter, the transistor temperature is

$$
T=T_{C}+T_{O}
$$

where:

- T_{C} is the Circuit temperature parameter value from the SPICE Environment Parameters block. If this block doesn't exist in the circuit, T_{C} is the default value of this parameter.
- T_{O} is the Offset local circuit temperature, TOFFSET parameter value.
- When you select Fixed temperature for the Model temperature dependence using parameter, the transistor temperature is the Fixed circuit temperature, TFIXED parameter value.

The block provides the following relationship between the saturation current $I S$ and the transistor temperature T :

$$
I S(T)=I S *\left(T / T_{\text {meas }}\right)^{X T I} * e^{\left(\frac{T}{T_{\text {meas }}}-1\right) * \frac{E G}{V_{t}}}
$$

where:

- IS is the Transport saturation current, IS parameter value.
- $T_{\text {meas }}$ is the Parameter extraction temperature, TMEAS parameter value.
- XTI is the Temperature exponent for IS, XTI parameter value.
- $E G$ is the Energy gap, EG parameter value.
- $V_{t}=k T / q$.

The block provides the following relationship between the base-emitter junction potential $V J E$ and the transistor temperature T :

SPICE NPN

$$
\operatorname{VJE}(T)=V J E *\left(\frac{T}{T_{\text {meas }}}\right)-\frac{3^{*} k^{*} T}{q} * \log \left(\frac{T}{T_{\text {meas }}}\right)-\left(\frac{T}{T_{\text {meas }}}\right) * E G_{T_{\text {meas }}}+E G_{T}
$$

where:

- VJE is the B-E built-in potential, VJE parameter value.
- $E G_{T_{\text {mess }}}=1.16 \mathrm{eV}-\left(7.02 e-4^{*} T_{\text {meas }}{ }^{2}\right) /\left(T_{\text {meas }}+1108\right)$
- $E G_{T}=1.16 \mathrm{eV}-\left(7.02 \mathrm{e}-4 * T^{2}\right) /(T+1108)$

The block uses the $\operatorname{VJE}(T)$ equation to calculate the base-collector junction potential by substituting VJC (the B-C built-in potential, VJC parameter value) for VJE.

The block provides the following relationship between the base-emitter junction capacitance CJE and the transistor temperature T :

$$
\operatorname{CJE}(T)=\operatorname{CJE} *\left[1+\operatorname{MJE} *\left(400 e-6 *\left(T-T_{\text {meas }}\right)-\frac{V J E(T)-V J E}{V J E}\right)\right]
$$

where:

- CJE is the B-E depletion capacitance, CJE parameter value.
- MJE is the B-E exponential factor, MJE parameter value.

The block uses the $\operatorname{CJE}(T)$ equation to calculate the base-collector junction capacitance by substituting CJC (the B-C depletion capacitance, CJC parameter value) for $C J E$ and $M J C$ (the B-C exponential factor, MJC parameter value) for MJE.
The block provides the following relationship between the forward and reverse beta and the transistor temperature T :

SPICE NPN

$$
\beta(T)=\beta *\left(\frac{T}{T_{\text {meas }}}\right)^{X T B}
$$

where:

- β is the Forward beta, BF or Reverse beta, BR parameter value.
- XTB is the Beta temperature exponent, XTB parameter value.

The block provides the following relationship between the base-emitter leakage current ISE and the transistor temperature T :

$$
\operatorname{ISE}(T)=\operatorname{ISE} *\left(\frac{T}{T_{\text {meas }}}\right)^{-\mathrm{XTB}} *\left(\frac{\mathrm{IS}(\mathrm{~T})}{\mathrm{IS}}\right)^{1 / \mathrm{NE}}
$$

where:

- ISE is the B-E leakage current, ISE parameter value.
- $N E$ is the B-E emission coefficient, NE parameter value.

The block uses this equation to calculate the base-collector leakage current by substituting ISC (the B-C leakage current, ISC parameter value) for $I S E$ and $N C$ (the B-C emission coefficient, NC parameter value) for $N E$.

Basic
 Assumptions and Limitations

The model is based on the following assumptions:

- The NPN block does not support noise analysis.
- The NPN block applies initial conditions across junction capacitors and not across the block ports.

Main Tab

Device area, AREA

The transistor area. This value multiplies the following parameter values:

- Transport saturation current, IS
- Forward knee current, IKF
- B-E leakage current, ISE
- Reverse knee current, IKR
- B-C leakage current, ISC
- Half base resistance cur, IRB
- B-E depletion capacitance, CJE
- Coefficient of TF, ITF
- B-C depletion capacitance, CJC
- C-S junction capacitance, CJS

It divides the following parameter values:

- Zero-bias base resistance, RB
- Minimum base resistance, RBM
- Emitter resistance, RE
- Collector resistance, RC

The default value is $1 \mathrm{~m}^{2}$. The value must be greater than 0 .

Number of parallel devices, SCALE

The number of parallel transistors the block represents. This value multiplies the output current and device charges. The default value is 1 . The value must be greater than 0 .

SPICE NPN

Forward Gain Tab

Transport saturation current, IS

The magnitude of the current at which the transistor saturates. The default value is $1 \mathrm{e}-16 \mathrm{~A} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

Forward beta, BF

The ideal maximum reverse beta. The default value is 100 . The value must be greater than 0 .

Forward emission coefficient, NF

The reverse emission coefficient or ideality factor. The default value is 1 . The value must be greater than 0 .

B-E leakage current, ISE

The base-emitter leakage current. The default value is $0 \mathrm{~A} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

B-E emission coefficient, NE

The base-collector emission coefficient or ideality factor. The default value is 1.5 . The value must be greater than 0 .

Forward knee current, IKF
The current value at which forward-beta high-current roll-off occurs. The default value is Inf $\mathrm{A} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

Forward Early voltage, VAF

The forward Early voltage. The default value is Inf V. The value must be greater than or equal to 0 .

SPICE NPN

Reverse Gain Tab

Reverse beta, BR

The ideal maximum reverse beta. The default value is 1 . The value must be greater than 0 .

Reverse emission coefficient, NR

The reverse emission coefficient or ideality factor. The default value is 1 . The value must be greater than 0 .

B-C leakage current, ISC

The base-collector leakage current. The default value is $0 \mathrm{~A} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

B-C emission coefficient, NC

The base-collector emission coefficient or ideality factor. The default value is 2 . The value must be greater than 0 .

Reverse knee current, IKR

The current value at which reverse-beta high-current roll-off occurs. The default value is $\operatorname{Inf} \mathrm{A} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

Reverse Early voltage, VAR

The reverse Early voltage. The default value is Inf V. The value must be greater than or equal to 0 .

Resistors Tab

SPICE NPN

Emitter resistance, RE

The resistance of the emitter. The default value is $1 \mathrm{e}-4 \mathrm{~m}^{2 *} \Omega$. The value must be greater than or equal to 0 .

Collector resistance, RC

The resistance of the collector. The default value is $0.01 \mathrm{~m}^{2 *} \Omega$. The value must be greater than or equal to 0 .

Zero-bias base resistance, RB

The resistance of the base. The default value is $1 \mathrm{~m}^{2 *} \Omega$. The value must be greater than or equal to 0 .

Minimum base resistance, RBM

The minimum resistance of the base. The default value is $0 \mathrm{~m}^{2 *} \Omega$. The value must be less than or equal to the Zero-bias base resistance, RB parameter value.

Half base resistance cur, IRB

The base current at which the base resistance has dropped to half of its zero-bias value. The default value is Inf A / m^{2}. The value must be greater than or equal to 0 . Use the default value of Inf if you do not want to model the change in base resistance as a function of base current.

Capacitance Tab

Model junction capacitance

Select one of the following options for modeling the junction capacitance:

- No - Do not include junction capacitance in the model. This is the default option.
- b-E Capacitance - Model the junction capacitance across the base-emitter junction.

SPICE NPN

- B-C Capacitance - Model the junction capacitance across the base-collector junction.
- C-S Capacitance - Model the junction capacitance across the collector-substrate junction.

Note To include junction capacitance in the model:
1 Select B-E Capacitance and specify the base-emitter junction capacitance parameters.

2 Select B-C Capacitance and specify the base-collector junction capacitance parameters.

3 Select C-S Capacitance and specify the collector-substrate junction capacitance parameters.

You can specify or change any of the common parameters when you select any of the preceding options for the Model junction capacitance parameter.

B-E depletion capacitance, CJE

The depletion capacitance across the base-emitter junction. This parameter is only visible when you select B-E Capacitance for the Model junction capacitance parameter. The default value is $0 \mathrm{~F} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

B-E built-in potential, VJE

The base-emitter junction potential. This parameter is only visible when you select B-E Capacitance for the Model junction capacitance parameter. The default value is 0.75 V . The value must be greater than or equal to 0.01 V .

B-E exponential factor, MJE

The grading coefficient for the base-emitter junction. This parameter is only visible when you select B-E Capacitance for the Model junction capacitance parameter. The default value
is 0.33 . The value must be greater than or equal to 0 and less than or equal to 0.9 .

Forward transit time, TF

The transit time of the minority carriers that cause diffusion capacitance when the base-emitter junction is forward-biased. This parameter is only visible when you select B-E Capacitance for the Model junction capacitance parameter. The default value is 0 . The value must be greater than or equal to 0 .

Coefficient of TF, XTF

The coefficient for the base-emitter and base-collector bias dependence of the transit time, which produces a charge across the base-emitter junction. This parameter is only visible when you select B-E Capacitance for the Model junction capacitance parameter. The default value is 0 . The value must be greater than or equal to 0 . Use the default value of 0 if you do not want to model the effect of base-emitter bias on transit time.

VBC dependence of TF, VTF

The coefficient for the base-emitter bias dependence of the transit time. This parameter is only visible when you select B-E Capacitance for the Model junction capacitance parameter. The default value is Inf V. The value must be greater than or equal to 0 .

Coefficient of TF, ITF

The coefficient for the dependence of the transit time on collector current. This parameter is only visible when you select B-E Capacitance for the Model junction capacitance parameter. The default value is $0 \mathrm{~A} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 . Use the default value of 0 if you do not want to model the effect of collector current on transit time.

B-C depletion capacitance, CJC

The depletion capacitance across the base-collector junction. This parameter is only visible when you select B-C Capacitance for the Model junction capacitance parameter. The default value is $0 \mathrm{~F} / \mathrm{m}^{2}$. The value must be greater than 0 .

SPICE NPN

B-C built-in potential, VJC

The base-collector junction potential. This parameter is only visible when you select B-C Capacitance for the Model junction capacitance parameter. The default value is 0.75 V . The value must be greater than or equal to 0.01 V .

B-C exponential factor, MJC

The grading coefficient for the base-collector junction. This parameter is only visible when you select B-C Capacitance for the Model junction capacitance parameter. The default value is 0.33 . The value must be greater than or equal to 0 and less than or equal to 0.9.

B-C capacitance fraction, XCJC

The fraction of the base-collector depletion capacitance that is connected between the internal base and the internal collector. The rest of the base-collector depletion capacitance is connected between the external base and the internal collector. This parameter is only visible when you select B-C Capacitance for the Model junction capacitance parameter. The default value is 0 . The value must be greater than or equal to 0 and less than or equal to 1 .

Reverse transit time, TR

The transit time of the minority carriers that cause diffusion capacitance when the base-collector junction is reverse-biased. This parameter is only visible when you select B-C Capacitance for the Model junction capacitance parameter. The default value is 0 s . The value must be greater than or equal to 0 .

Capacitance coefficient FC

The fitting coefficient that quantifies the decrease of the depletion capacitance with applied voltage. This parameter is only visible when you select B-E Capacitance or B-C Capacitance for the Model junction capacitance parameter. The default value is 0.5 . The value must be greater than or equal to 0 and less than or equal to 0.95 .

Specify initial condition

Select one of the following options for specifying an initial condition:

- No - Do not specify an initial condition for the model. This is the default option.
- Yes - Specify the initial transistor conditions.

Note The NPN block applies the initial transistor voltages across the junction capacitors and not across the ports.

This parameter is only visible when you select B-E Capacitance or B-C Capacitance for the Model junction capacitance parameter.

Initial condition voltage ICVBE

Base-emitter voltage at the start of the simulation. This parameter is only visible when you select B-E Capacitance or B-C Capacitance for the Model junction capacitance and Yes for the Specify initial condition parameter. The default value is 0 V .

Initial condition voltage ICVCE

Base-collector voltage at the start of the simulation. This parameter is only visible when you select B-E Capacitance or B-C Capacitance for the Model junction capacitance and Yes for the Specify initial condition parameter. The default value is 0 V .

C-S junction capacitance, CJS
The collector-substrate junction capacitance. This parameter is only visible when you select C-S Capacitance for the Model junction capacitance parameter. The default value is $0 \mathrm{~F} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

SPICE NPN

Substrate built-in potential, VJS
The potential of the substrate. This parameter is only visible when you select C-S Capacitance for the Model junction capacitance parameter. The default value is 0.75 V .

Substrate exponential factor, MJS

The grading coefficient for the collector-substrate junction. This parameter is only visible when you select C-S Capacitance for the Model junction capacitance parameter. The default value is 0 . The value must be greater than or equal to 0 and less than or equal to 0.9.

Temperature Tab

SPICE NPN

Model temperature dependence using

Select one of the following options for modeling the transistor temperature dependence:

- Device temperature - Use the device temperature, which is the Circuit temperature value plus the Offset local circuit temperature, TOFFSET value. The Circuit temperature value comes from the SPICE Environment Parameters block, if one exists in the circuit. Otherwise, it comes from the default value for this block.
- Fixed temperature - Use a temperature that is independent of the circuit temperature to model temperature dependence.

Beta temperature exponent, XTB

The forward and reverse beta temperature exponent that models base current temperature dependence. This parameter is only visible when you select Device temperature for the Model temperature dependence using parameter. The default value is 0 . The value must be greater than or equal to 0 .

Energy gap, EG
The energy gap that affects the increase in the saturation current as temperature increases. This parameter is only visible when you select Device temperature for the Model temperature dependence using parameter. The default value is 1.11 eV . The value must be greater than or equal to 0.1.

Temperature exponent for IS, XTI

The order of the exponential increase in the saturation current as temperature increases. This parameter is only visible when you select Device temperature for the Model temperature dependence using parameter. The default value is 3 . The value must be greater than or equal to 0 .

Offset local circuit temperature, TOFFSET

The amount by which the transistor temperature differs from the circuit temperature. This parameter is only visible when you select Device temperature for the Model temperature dependence using parameter. The default value is 0 K .

SPICE NPN

Parameter extraction temperature, TMEAS

The temperature at which the transistor parameters were measured. The default value is 300.15 K . The value must be greater than 0 .

Fixed circuit temperature, TFIXED

The temperature at which to simulate the transistor. This parameter is only visible when you select Fixed temperature for the Model temperature dependence using parameter. The default value is 300.15 K . The value must be greater than 0 .

Ports

The block has the following ports:

B
Electrical conserving port associated with the transistor base terminal.

C
Electrical conserving port associated with the transistor collector terminal.

E
Electrical conserving port associated with the transistor emitter terminal.

S
Electrical conserving port associated with the transistor substrate terminal.

References
[1] G. Massobrio and P. Antognetti. Semiconductor Device Modeling with SPICE. 2nd Edition, McGraw-Hill, 1993. Chapter 2.

See Also NPN Bipolar Transistor

SPICE PJFET

Purpose

Model SPICE-compatible P-Channel JFET

Library

Description

SPICE-Compatible Components/Semiconductor Devices
The PJFET block represents a SPICE-compatible P-channel JFET.
The PJFET block model includes the following components:

- "Source-Gate Current-Voltage Model" on page 2-493
- "Drain-Gate Current-Voltage Model" on page 2-494
- "Source-Drain Current-Voltage Model" on page 2-495
- "Junction Charge Model" on page 2-496
- "Temperature Dependence" on page 2-498

Source-Gate Current-Voltage Model

The block provides the following relationship between the source-gate current $I_{s g}$ and the source-gate voltage $V_{s g}$ after adjusting the applicable model parameters for temperature.

Applicable Range of $\boldsymbol{V}_{s g}$ Values	Corresponding $I_{s g}$ Equation
$V_{s g}>80 * V_{t}$	$I_{s g}=I S *\left(\left(\frac{V_{s g}}{V_{t}}-79\right) e^{80}-1\right)+V_{s g} * G \mathrm{~min}$
$80 * V_{t} \geq V_{s g}$	$I_{s g}=I S *\left(e^{V_{s g} / V_{t}}-1\right)+V_{s q} * G \mathrm{~min}$

Where:

- IS is the Saturation current, IS parameter value.
- $V_{t}=N D * k * T / q$
- $N D$ is the Emission coefficient, ND parameter value.

SPICE PJFET

- q is the elementary charge on an electron.
- k is the Boltzmann constant.
- T is the diode temperature:
- If you select Device temperature for the Model temperature dependence using parameter, T is the sum of the Circuit temperature value plus the Offset local circuit temperature, TOFFSET parameter value. The Circuit temperature value comes from the SPICE Environment Parameters block, if one exists in the circuit. Otherwise, it comes from the default value for this block.
- If you select Fixed temperature for the Model temperature dependence using parameter, T is the Fixed circuit temperature, TFIXED parameter value.
- GMIN is the diode minimum conductance. By default, GMIN matches the Minimum conductance GMIN parameter of the SPICE Environment Parameters block, whose default value is $1 \mathrm{e}-12$. To change GMIN, add a SPICE Environment Parameters block to your model and set the Minimum conductance GMIN parameter to the desired value.

Drain-Gate Current-Voltage Model

The block provides the following relationship between the drain-gate current $I_{d g}$ and the drain-gate voltage $V_{d g}$ after adjusting the applicable model parameters for temperature.

Applicable Range of \mathbf{V}_{dg} Values	Corresponding I_{dg} Equation
$V_{d g}>80 * V_{t}$	$I_{d g}=I S *\left(\left(\frac{V_{d g}}{V_{t}}-79\right) e^{80}-1\right)+V_{d g} * G$ min
$80 * V_{t} \geq V_{d g}$	$I_{d g}=I S *\left(e^{V_{d g} / V_{t}}-1\right)+V_{d g} * G \min$

SPICE PJFET

Source-Drain Current-Voltage Model

The block provides the following relationship between the source-drain current $I_{s d}$ and the source-drain voltage $V_{s d}$ in normal mode ($V_{s d} \geq 0$) after adjusting the applicable model parameters for temperature.

Applicable Range of $\boldsymbol{V}_{s g}$ and $\boldsymbol{V}_{d g}$ Values	Corresponding $I_{s d}$ Equation
$V_{s q}-V_{t o} \leq 0$	$I_{s d}=0$
$0<V_{s q}-V_{t o} \leq V_{s d}$	$I_{s d}=-\beta *\left(V_{s q}-V_{t o}\right)^{2} *\left(1+\lambda * V_{s d}\right)$
$0<V_{s d}<V_{s q}-V_{t o}$	$I_{s d}=\beta^{*} V_{s d} *\left(2 *\left(V_{s q}-V_{t o}\right)-V_{s d}\right) *\left(1+\lambda * V_{s d}\right)$

Where:

- $V_{t o}$ is the Threshold voltage, VTO parameter value.
- β is the Transconductance, BETA parameter value.
- λ is the Channel modulation, LAMBDA parameter value.

The block provides the following relationship between the source-drain current $I_{s d}$ and the source-drain voltage $V_{s d}$ in inverse mode ($V_{s d}<0$) after adjusting the applicable model parameters for temperature.

SPICE PJFET

Applicable Range of $\boldsymbol{V}_{\text {sg }}$ and $\boldsymbol{V}_{\mathrm{dg}}$ Values	Corresponding $\boldsymbol{I}_{\text {sd }}$ Equation
$V_{d g}-V_{t o} \leq 0$	$I_{s d}=0$
$0<V_{d g}-V_{t o} \leq-V_{s d}$	$I_{s d}=\beta *\left(V_{d g}-V_{t o}\right)^{2} *\left(1-\lambda * V_{s d}\right)$
$0<-V_{s d}<V_{d g}-V_{t o}$	$I_{s d}=\beta^{*} V_{s d} *\left(2 *\left(V_{d g}-V_{t o}\right)+V_{s d}\right) *\left(1-\lambda * V_{s d}\right)$

Junction Charge Model

The block provides the following relationship between the source-gate charge $Q_{s g}$ and the source-gate voltage $V_{s g}$ after adjusting the applicable model parameters for temperature.

Applicable Range of $\mathbf{V}_{s g}$ Values $V_{s g}<F C * V J$ $Q_{s g}=\frac{C o r r e s p o n d i n g ~}{} \mathbf{Q}_{\text {sg }}$ Equation $V_{s g} \geq F C * V J$	$Q_{s g}=C G S *\left(F 1+\frac{\left.F 3^{*}\left(V_{s g}-F C * V J\right)+\frac{M G *\left(V_{s g}^{2}-(F C * V J)^{2}\right)}{2 * V J}\right)}{1-M G}\right)$

SPICE PJFET

- $F C$ is the Capacitance coefficient FC parameter value.
- VJ is the Junction potential VJ parameter value.
- CGS is the Zero-bias GS capacitance, CGS parameter value.
- $M G$ is the Grading coefficient, MG parameter value.
- $F 1=\frac{V J^{*}\left(1-(1-F C)^{1-M G}\right)}{1-M G}$
- $F 2=(1-F C)^{1+M G}$
- $F 3=1-F C *(1+M G)$

The block provides the following relationship between the drain-gate charge $Q_{d g}$ and the drain-gate voltage $V_{d g}$ after adjusting the applicable model parameters for temperature.

Applicable Range of \mathbf{V}_{dg} Values	Corresponding $\mathbf{Q}_{\mathbf{d g}}$ Equation
$V_{d g}<F C^{*} V J$	
$\left.Q_{d g}=\frac{C G D^{*} V J *\left(1-\left(1-\frac{V_{d g}}{V J}\right)^{1-M G}\right)}{1-M G}\right)$	
$V_{d g} \geq F C^{*} V J$	$Q_{d g}=C G D^{*}\left(F 1+\frac{F 3^{*}\left(V_{d g}-F C^{*} V J\right)+\frac{M G *\left(V_{d g}^{2}-\left(F C^{*} V J\right)^{2}\right)}{2 * V J}}{F 2}\right)$

Where:

SPICE PJFET

- $C G D$ is the Zero-bias GD capacitance, CGD parameter value.

Temperature Dependence

Several transistor parameters depend on temperature. There are two ways to specify the transistor temperature:

- When you select Device temperature for the Model temperature dependence using parameter, the transistor temperature is

$$
T=T_{C}+T_{O}
$$

where:

- T_{C} is the Circuit temperature parameter value from the SPICE Environment Parameters block. If this block doesn't exist in the circuit, T_{C} is the default value of this parameter.
- T_{O} is the Offset local circuit temperature, TOFFSET parameter value.
- When you select Fixed temperature for the Model temperature dependence using parameter, the transistor temperature is the Fixed circuit temperature, TFIXED parameter value.

The block provides the following relationship between the saturation current $I S$ and the transistor temperature T :

$$
I S(T)=I S *\left(T / T_{\text {meas }}\right)^{\frac{X T I}{N D}} * e^{\left(\frac{T}{T_{\text {meas }}}-1\right) \cdot \frac{E G}{V_{t}}}
$$

where:

- IS is the Saturation current, IS parameter value.
- $T_{\text {meas }}$ is the Parameter extraction temperature, TMEAS parameter value.
- $X T I$ is the Saturation current temperature exponent, XTI parameter value.
- $E G$ is the Energy gap, EG parameter value.

SPICE PJFET

- $V_{t}=N D^{*} k * T / q$
- $N D$ is the Emission coefficient, ND parameter value.

The block provides the following relationship between the junction potential $V J$ and the transistor temperature T :

$$
V J(T)=V J *\left(\frac{T}{T_{\text {meas }}}\right)-\frac{3^{*} k * T}{q} * \log \left(\frac{T}{T_{\text {meas }}}\right)-\left(\frac{T}{T_{\text {meas }}}\right) * E G_{T_{\text {meas }}}+E G_{T}
$$

where:

- $V J$ is the Junction potential VJ parameter value.
- $E G_{T_{\text {meas }}}=1.16 \mathrm{eV}-\left(7.02 e-4 * T_{\text {meas }}{ }^{2}\right) /\left(T_{\text {meas }}+1108\right)$
- $E G_{T}=1.16 e V-\left(7.02 e-4 * T^{2}\right) /(T+1108)$

The block provides the following relationship between the gate-source junction capacitance $C G S$ and the transistor temperature T :

$$
C G S(T)=C G S *\left[1+M G *\left(400 e-6 *\left(T-T_{\text {meas }}\right)-\frac{V J(T)-V J}{V J}\right)\right]
$$

where:

- CGS is the Zero-bias GS capacitance, CGS parameter value.

The block uses the $C G S(T)$ equation to calculate the gate-drain junction capacitance by substituting $C G D$ (the Zero-bias GD capacitance, CGD parameter value) for CGS.
The block provides the following relationship between the forward and reverse beta and the transistor temperature T :

SPICE PJFET

$$
\beta(T)=\beta *\left(\frac{T}{T_{\text {meas }}}\right)
$$

where β is the Transconductance, BETA parameter value.

Basic
 The model is based on the following assumptions:
 Assumptions
 and
 Limitations
 - The PJFET block does not support noise analysis.
 - The PJFET block applies initial conditions across junction capacitors and not across the block ports.

SPICE PJFET

Dialog Box and Parameters

Main Tab

Device area, AREA

The transistor area. This value multiplies the Transconductance, BETA, Zero-bias GS capacitance, CGS, Zero-bias GD capacitance, CGD, and Saturation current, IS parameter values. It divides the Source resistance, RS and Drain resistance, RD parameter values. The default value is 1 m^{2}. The value must be greater than 0 .

SPICE PJFET

Number of parallel devices, SCALE

The number of parallel transistors the block represents. This value multiplies the output current and device charges. The default value is 1 . The value must be greater than 0 .

Threshold voltage, VTO

The gate-source voltage above which the transistor produces a nonzero drain current. The default value is -2 V .

Transconductance, BETA

The derivative of drain current with respect to gate voltage. The default value is $1 \mathrm{e}-04 \mathrm{~A} / \mathrm{m}^{2} / \mathrm{V}^{2}$. The value must be greater than or equal to 0 .

Channel modulation, LAMBDA

The channel-length modulation. The default value is $01 / \mathrm{V}$.

Saturation current, IS

The magnitude of the current that the ideal diode equation approaches asymptotically for very large reverse bias levels. The default value is $1 \mathrm{e}-14 \mathrm{~A} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

Emission coefficient, ND

The transistor emission coefficient or ideality factor. The default value is 1 . The value must be greater than 0 .

Source resistance, RS

The transistor source resistance. The default value is $1 \mathrm{e}-4 \mathrm{~m}^{2 *} \Omega$. The value must be greater than or equal to 0 .

Drain resistance, RD

The transistor drain resistance. The default value is $0.01 \mathrm{~m}^{2 *} \Omega$. The value must be greater than or equal to 0 .

SPICE PJFET

Junction Capacitance Tab

Model junction capacitance

Select one of the following options for modeling the junction capacitance:

- No - Do not include junction capacitance in the model. This is the default option.

SPICE PJFET

- Yes - Specify zero-bias junction capacitance, junction potential, grading coefficient, forward-bias depletion capacitance coefficient, and transit time.

Zero-bias GS capacitance, CGS

The value of the capacitance placed between the gate and the source. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 0 $\mathrm{F} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

Zero-bias GD capacitance, CGD

The value of the capacitance placed between the gate and the drain. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 0 $\mathrm{F} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

Junction potential VJ

The junction potential. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 1 V . The value must be greater than 0.01 V .

Grading coefficient, MG

The transistor grading coefficient. The default value is 0.5 . The value must be greater than 0 and less than 0.9.

Capacitance coefficient FC

The fitting coefficient that quantifies the decrease of the depletion capacitance with applied voltage. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 0.5 . The value must be greater than or equal to 0 and less than or equal to 0.95 .

Specify initial condition

Select one of the following options for specifying an initial condition:

- No - Do not specify an initial condition for the model. This is the default option.
- Yes - Specify the initial diode voltage.

SPICE PJFET

Note The PJFET block applies the initial diode voltage across the junction capacitors and not across the ports.

Initial condition voltage ICVDS

Drain-source voltage at the start of the simulation. This parameter is only visible when you select Yes for the Model junction capacitance and Yes for the Specify initial condition parameter. The default value is 0 V .

Initial condition voltage ICVGS

Gate-source voltage at the start of the simulation. This parameter is only visible when you select Yes for the Model junction capacitance and Yes for the Specify initial condition parameter. The default value is 0 V .

SPICE PJFET

Temperature Tab

Model temperature dependence using

Select one of the following options for modeling the diode temperature dependence:

- Device temperature - Use the device temperature, which is the Circuit temperature value plus the Offset local circuit temperature, TOFFSET value. The Circuit temperature value comes from the SPICE Environment Parameters block, if
one exists in the circuit. Otherwise, it comes from the default value for this block.
- Fixed temperature - Use a temperature that is independent of the circuit temperature to model temperature dependence.

Saturation current temperature exponent, XTI

The order of the exponential increase in the saturation current as temperature increases. The default value is 0 . The value must be greater than or equal to 0 .

Activation energy, EG
The energy gap that affects the increase in the saturation current as temperature increases. The default value is 1.11 eV . The value must be greater than 0.1 eVi .

Offset local circuit temperature, TOFFSET

The amount by which the transistor temperature differs from the circuit temperature. This parameter is only visible when you select Device temperature for the Model temperature dependence using parameter. The default value is 0 K .

Fixed circuit temperature, TFIXED
The temperature at which to simulate the transistor. This parameter is only visible when you select Fixed temperature for the Model temperature dependence using parameter. The default value is 300.15 K . The value must be greater than 0 .

Parameter extraction temperature, TMEAS

The temperature at which the transistor parameters were measured. The default value is 300.15 K . The value must be greater than 0 .

Ports The block has the following ports:

G
Electrical conserving port associated with the transistor gate terminal.

SPICE PJFET

D
Electrical conserving port associated with the transistor drain terminal.

Electrical conserving port associated with the transistor source terminal.

References
[1] G. Massobrio and P. Antognetti. Semiconductor Device Modeling with SPICE. 2nd Edition, McGraw-Hill, 1993. Chapter 3.

See Also P-Channel JFET, SPICE NJFET

SPICE PMOS

Purpose

Model SPICE-compatible P-Channel MOSFET

Library

Description
SPICE-Compatible Components/Semiconductor Devices
The PMOS block represents a SPICE-compatible P-channel MOSFET.
The PMOS block model includes the following components:

- "Resistance Calculations" on page 2-509
- "Bulk-Source Diode Model" on page 2-510
- "Bulk-Drain Diode Model" on page 2-511
- "Level 1 Drain Current Model" on page 2-512
- "Level 3 Drain Current Model" on page 2-515
- "Junction Charge Model" on page 2-521
- "Temperature Dependence" on page 2-526

Resistance Calculations

The following table shows how the PMOS block calculates the transistor drain resistance. The abbreviations in the table represent the values of the following block parameters:

- Drain resistance, RD
- Sheet resistance, RSH
- Number of drain squares, NRD

Drain resistance, RD Parameter	Sheet resistance, RSH Parameter	Drain Resistance
NaN	NaN	0
$R D$	NaN or $R S H$	$R D$
NaN	$R S H$	$R S H^{*} N R D$

SPICE PMOS

The following table shows how the PMOS block calculates the transistor source resistance. The abbreviations in the table represent the values of the following block parameters:

- Source resistance, RS
- Sheet resistance, RSH
- Number of source squares, NRS

Source resistance, RS Parameter	Sheet resistance, RSH Parameter	Source Resistance
NaN	NaN	0
$R S$	NaN or $R S H$	$R S$
NaN	$R S H$	$R S H^{*} N R S$

Bulk-Source Diode Model

The block provides the following relationship between the bulk-source current $I_{s b}$ and the bulk-source voltage $V_{s b}$ after adjusting the applicable model parameters for temperature.

Applicable Range of $\boldsymbol{V}_{s b}$ Values	Corresponding $\boldsymbol{I}_{\mathbf{g s}}$ Equation
$V_{s b}>80 * V_{t n}$	$I_{s b}=I S_{s b} *\left(\left(\frac{V_{s b}}{V_{t n}}-79\right) e^{80}-1\right)+V_{s b} * G$ min
$80 V_{t n} \geq V_{s b}$	$I_{s b}=I S_{s b} *\left(e^{V_{s b} / V_{n t}}-1\right)+V_{s b} * G$ min

Where:

- $I S_{s b}$ is
- The product of the Bulk jct sat current density, JS parameter value and the Area of source, AS parameter value if both these

SPICE PMOS

parameter values and the Area of drain, AD parameter value are nonzero.

- The Bulk saturation current, IS parameter value, otherwise.
- $V_{t n}=N k T / q$
- q is the elementary charge on an electron, 1.6021918e-19 C.
- N is the Emission coefficient, ND parameter value.
- k is the Boltzmann constant.
- T is the diode temperature:
- If you select Device temperature for the Model temperature dependence using parameter, T is the sum of the Circuit temperature value plus the Offset local circuit temperature, TOFFSET parameter value. The Circuit temperature value comes from the SPICE Environment Parameters block, if one exists in the circuit. Otherwise, it comes from the default value for this block.
- If you select Fixed temperature for the Model temperature dependence using parameter, T is the Fixed circuit temperature, TFIXED parameter value.
- GMIN is the diode minimum conductance. By default, GMIN matches the Minimum conductance GMIN parameter of the SPICE Environment Parameters block, whose default value is 1e-12. To change GMIN, add a SPICE Environment Parameters block to your model and set the Minimum conductance GMIN parameter to the desired value.

Bulk-Drain Diode Model

The block provides the following relationship between the bulk-drain current $I_{d b}$ and the bulk-drain voltage $V_{d b}$ after adjusting the applicable model parameters for temperature.

SPICE PMOS

Applicable Range of $\boldsymbol{V}_{\mathrm{db}}$ Values	Corresponding $\mathbf{I}_{\mathbf{g s}}$ Equation
$V_{d b}>80 * V_{t n}$	$I_{d b}=I S_{d b} *\left(\left(\frac{V_{d b}}{V_{t n}}-79\right) e^{80}-1\right)+V_{d b} * G$ min
$80 V_{t n} \geq V_{d b}$	$I_{d b}=I S_{d b} *\left(e^{V_{d b} / V_{n n}}-1\right)+V_{d b} * G$ min

Where:

- $I S_{d b}$ is
- The product of the Bulk jct sat current density, JS parameter value and the Area of drain, AD parameter value if both these parameter values and the Area of source, AS parameter value are nonzero.
- The Bulk saturation current, IS parameter value, otherwise.

Level 1 Drain Current Model

The block provides the following relationship between the drain current
$I_{s d}$ and the drain-source voltage $V_{s d}$ in normal mode ($V_{s d} \geq 0$) after adjusting the applicable model parameters for temperature.

SPICE PMOS

Normal Mode

Applicable Range of $\boldsymbol{V}_{\text {sg }}$ and $\boldsymbol{V}_{\text {sd }}$ Values	Corresponding $I_{\text {sd }}$ Equation
$V_{s g}-V_{o n} \leq 0$	$I_{s d}=0$
$0<V_{s g}-V_{o n} \leq V_{s d}$	$I_{\text {sd }}=B E T A *\left(V_{s g}-V_{o n}\right)^{2} \frac{\left(1+L A M B D A^{*} V_{s d}\right)}{2}$
$0<V_{s d}<V_{s g}-V_{o n}$	$I_{s d}=B E T A *$ $V_{s d}\left(\left(V_{s g}-V_{o n}\right)-\frac{V_{s d}}{2}\right)\left(1+L A M B D A^{*} V_{s d}\right)$

Where:

- $V_{o n}$ is:
- $M T Y P E * V B I+G A M M A \sqrt{P H I-V_{s b}}$ if $V_{s b} \leq 0$.
- $M T Y P E^{*} V B I+G A M M A\left(\sqrt{P H I}-\frac{V_{s b}}{2 \sqrt{P H I}}\right)$ if $0<V_{s b} \leq 2 * P H I$.
- MTYPE*VBI if $V_{s b}>2^{*}$ PHI.
- MTYPE is -1 .
- BETA is $K P^{*} W I D T H /(L E N G T H-2 * L D)$
- $K P$ is:
- The Transconductance, KP parameter value, if this parameter has a numerical value.

SPICE PMOS

- U0*3.9* $\varepsilon_{0} / T O X$, if Transconductance, KP is NaN and you specify values for both the Oxide thickness, TOX and Substrate doping, NSUB parameters.
- WIDTH is the Width of channel, WIDTH parameter value.
- LENGTH is the Length of channel, LENGTH parameter value.
- $L D$ is the Lateral diffusion, $\mathbf{L D}$ parameter value.
- VBI is an built-in voltage value the block uses in calculations. The value is a function of temperature. For a detailed definition, see "Temperature Dependence" on page 2-444.
- PHI is:
- The Surface potential, PHI parameter value, if this parameter has a numerical value.
- $2 * k T_{\text {meas }} / q * \log \left(N S U B / n_{i}\right)$, if Surface potential, PHI is NaN and you specify values for both the Oxide thickness, TOX and Substrate doping, NSUB parameters.
- $L A M B D A$ is the Channel modulation, LAMBDA parameter value.
- GAMMA is:
- The Bulk threshold, GAMMA parameter value, if this parameter has a numerical value.
- TOX $* \sqrt{2 * 11.7^{*} \varepsilon_{0}{ }^{*} q^{*} N S U B} /\left(3.9 * \varepsilon_{0}\right)$, if Bulk threshold, GAMMA is NaN and you specify values for both the Oxide thickness, TOX and Substrate doping, NSUB parameters.
- ε_{0} is the permittivity of free space, $8.854214871 \mathrm{e}-12 \mathrm{~F} / \mathrm{m}$.
- n_{i} is the carrier concentration of intrinsic silicon, $1.45 \mathrm{e}_{10} \mathrm{~cm}^{-3}$.

The block provides the following relationship between the drain current
$I_{s d}$ and the drain-source voltage $V_{s d}$ in inverse mode ($V_{s d}<0$) after adjusting the applicable model parameters for temperature.

SPICE PMOS

Inverse Mode

Applicable Range of $\boldsymbol{V}_{\text {dg }}$ and $\boldsymbol{V}_{\text {sd }}$ Values	Corresponding $I_{\text {sd }}$ Equation
$V_{d g}-V_{o n} \leq 0$	$I_{s d}=0$
$0<V_{d g}-V_{o n} \leq-V_{\text {sd }}$	

Where:

- $V_{o n}$ is:
- MTYPE * VBI + GAMMA $\sqrt{P H I-V_{d b}}$ if

$$
V_{d b} \leq 0
$$

- MTYPE *VBI + GAMMA $\left(\sqrt{P H I}-\frac{V_{d b}}{2 \sqrt{P H I}}\right)$ if

$$
0<V_{d b} \leq 2 * P H I
$$

- MTYPE*VBI if $V_{d b}>2 * P H I$.

Level 3 Drain Current Model

The block provides the following model for drain current $I_{s d}$ in normal mode ($V_{s d} \geq 0$) after adjusting the applicable model parameters for temperature.

SPICE PMOS

$$
I_{S D}=I_{S D D} * \text { Scale }_{\text {VMAX }} * \text { Scale }_{\text {LChan }} * \text { Scale }_{I N V}
$$

Where:

- $I_{\text {SDo }}$ is the Basic Drain Current Model.
- Scale $_{\text {VMAX }}$ is the Velocity Saturation Scaling.
- Scale $_{\text {LChan }}$ is the Channel Length Modulation Scaling.
- Scale $_{I N V}$ is the Weak Inversion Scaling.

The blocks uses the same model for drain current in inverse mode
($V_{s d}<0$), with the following substitutions:

- $V_{s b}-V_{s d}$ for $V_{s b}$
- $V_{s g}-V_{s d}$ for $V_{s d}$
- $-V_{s d}$ for $V_{s d}$

Basic Drain Current Model

The block provides the following relationship between the drain current $I_{s d}$ and the drain-source voltage $V_{d s}$:

$$
I_{S D 0}=B E T A * F_{\text {gate }} *\left(V_{S G X}-V_{T H}-\frac{1+F_{B}}{2} * V_{S D X}\right) * V_{S D X}
$$

- The block calculates BETA as described in "Level 1 Drain Current Model" on page 2-512.
- The block calculates $F_{G A T E}$ using the following equation:

$$
F_{\text {gate }}=\frac{1}{1+T H E T A *\left(V_{s g x}-V_{T H}\right)}
$$

- THETA is the Vgs dependence on mobility, THETA parameter value.

SPICE PMOS

- $V_{s g x}=\max \left(V_{S G}, V_{o n}\right)$
- If you specify a nonzero value for the Fast surface state density, NFS parameter, the block calculates $V_{\text {on }}$ using the following equation:

$$
V_{o n}=V_{T H}+x_{n} V_{T}
$$

Otherwise, $V_{o n}=V_{T H}$.

- The block calculates x_{n} using the following equation:

$$
x_{n}=1+\frac{q^{* N F S}}{C O X}+\frac{\left(G A M M A * F_{s} * \sqrt{V_{b u l k}}+\frac{F_{n} * V_{\text {bulk }}}{W I D T H}\right)}{2 * V_{b u l k}}
$$

- The block calculates $V_{b u l k}$ as follows:
- If $V_{S B} \leq 0, V_{\text {bulk }}=\mathrm{PHI}-V_{B S}$.
- Otherwise, the block calculates $V_{\text {bulk }}$ using the following equation:

$$
V_{b u l k}=\frac{P H I}{\left(1+\frac{V_{S B}}{2 * P H I}\right)^{2}}
$$

- $V_{T}=k T / q$
- The block calculates $V_{T H}$ using the equation following equation:

$$
\begin{aligned}
V_{T H}= & V_{B I}-\frac{8.15 e^{-22} * E T A}{C O X *(L E N G T H-2 * L D)^{3}} * V_{S D} \\
& +G A M M A * F_{s} * \sqrt{V_{b u l k}}+F_{n} * V_{b u l k}
\end{aligned}
$$

- For information about how the block calculates $V_{B I}$, see "Temperature Dependence" on page 2-526.

SPICE PMOS

- ETA is the Vds dependence threshold volt, ETA parameter value.
- $C O X=\varepsilon_{o x} / T O X$, where $\varepsilon_{o x}$ is the permittivity of the oxide and $T O X$ is the Oxide thickness, TOX parameter value.
- If you specify a nonzero value for the Junction depth, XJ parameter and a value for the Substrate doping, NSUB parameter, the block calculates F_{s} using the following equations:

$$
\begin{aligned}
\alpha= & \frac{2 \varepsilon_{s i}}{q N S U B} \\
X D= & \sqrt{\alpha} \\
w c= & .0631353+.8013292 * \frac{X D^{*} \sqrt{V_{\text {bulk }}}}{X J} \\
& -.01110777 *\left(\frac{X D^{*} \sqrt{V_{\text {bulk }}}}{X J}\right)^{2}+\frac{L D}{X J} \\
F_{s}= & 1-\left(w c^{*} \sqrt{1-\left(\frac{X D^{*} \sqrt{V_{\text {bulk }}}}{X J+X D^{*} \sqrt{V_{\text {bulk }}}}\right)^{2}}-\frac{L D}{X J}\right)
\end{aligned}
$$

where $\varepsilon_{s i}$ is the permittivity of silicon.
Otherwise, $F_{s}=1$.

- The block calculates F_{B} using the following equation:

$$
F_{B}=\frac{G A M M A * F_{s}}{4 * \sqrt{V_{b u l k}}}+F_{n}
$$

- The block calculates F_{n} using the following equation:

SPICE PMOS

$$
F_{n}=\frac{D E L T A * \pi * \varepsilon_{s i}}{2 * C O X * W I D T H}
$$

- DELTA is the Width effect on threshold, DELTA parameter value.
- $V_{S D X}$ is the lesser of $V_{S D}$ and the saturation voltage, $V_{d s a t}$.
- If you specify a positive value for the Max carrier drift velocity, VMAX parameter, the block calculates $V_{d s a t}$ using the following equation:

$$
\begin{aligned}
V_{d s a t}= & \frac{V_{s g x}-V_{T H}}{1+F_{B}}+\frac{(L E N G T H-2 * L D) * V M A X}{U O^{*} F_{g a t e}} \\
& -\sqrt{\left(\frac{V_{s g x}-V_{T H}}{1+F_{B}}\right)^{2}+\left(\frac{(L E N G T H-2 * L D) * V M A X}{U O^{*} F_{g a t e}}\right)^{2}}
\end{aligned}
$$

Otherwise, the block calculates $V_{d s a t}$ using the following equation:

$$
V_{d s a t}=\frac{V_{s g x}-V_{T H}}{1+F_{B}}
$$

Velocity Saturation Scaling

If you specify a positive value for the Max carrier drift velocity, VMAX parameter, the block calculates Scale ${ }_{\text {VMAX }}$ using the following equation:

$$
\text { Scale }_{\text {VMAX }}=\frac{1}{1+\frac{U O^{*} F_{\text {gate }}}{(L E N G T H-2 * L D) * V M A X} * V_{S D X}}
$$

Otherwise, Scale $_{\text {VMAX }}=1$.

SPICE PMOS

Channel Length Modulation Scaling

The block scales the drain current to account for channel length modulation if the block meets all of the following criteria:

- $V_{S D}>V_{s a t}$
- The Max carrier drift velocity, VMAX parameter value is zero or a is nonzero.

The block scales the drain current using the following equation:

$$
\text { Scale }_{\text {LChan }}=\frac{1}{1-\frac{\Delta l}{\left(L E N G T H-2^{*} L D\right)}}
$$

The block uses the following procedure to calculate Δl :
1 The block first calculates the intermediate value Δl_{0}.

- If you specify a positive value for the Max carrier drift velocity, VMAX parameter, the block computes the intermediate value $g_{d s a t}$ as the greater of $1 \mathrm{e}-12$ and the result of the following equation:

$$
I_{S D 0} *\left(1-\frac{1}{1+\text { Scale }_{g_{\text {dast }}} * V_{S D X}}\right) * \text { Scale }_{g_{\text {dsat }}}
$$

where:

$$
\text { Scale }_{g_{\text {dsata }}}=\frac{U O * F_{\text {gate }}}{(L E N G T H-2 * L D) * V M A X}
$$

Then, the block uses the following equation to calculate the intermediate value Δl_{0} :

SPICE PMOS

$$
\begin{aligned}
\Delta l_{0}= & \sqrt{\left(\frac{K A^{*} I_{S D}}{2 *(L E N G T H-2 * L D) * g_{d s a t}}\right)^{2}+K A^{*}\left(V_{S D}-V_{d s a t}\right)} \\
& -\frac{K A^{*} I_{S D}}{2 *(L E N G T H-2 * L D) * g_{d s a t}}
\end{aligned}
$$

where $K A$ is the product of the Mobility modulation, KAPPA parameter value and a.

- Otherwise, the block uses the following equation to calculate the intermediate value Δl_{0} :

$$
\Delta l=\sqrt{K A^{*}\left(V_{S D}-V_{d s a t}\right)}
$$

2 The block checks for punch through and calculates Δl.

- If Δl_{0} is greater than $\left(L E N G T H-2^{*} L D\right) / 2$, the block calculates Δl using the following equation:

$$
\Delta l=\left(1-\frac{(L E N G T H-2 * L D)}{4 * \Delta l_{0}}\right) *(\text { LENGTH }-2 * L D)
$$

- Otherwise, $\Delta l=\Delta l_{0}$.

Weak Inversion Scaling

If $V_{S G}$ is less than $V_{o n}$, the block calculates $S c a l e_{I N V}$ using the following equation:

$$
\text { Scale }_{I N V}=e^{\frac{V_{s g}-V_{o n}}{x_{n}^{*} V_{T}}}
$$

Otherwise, Scale $_{\text {INV }}=1$.

Junction Charge Model

The block models the following junction charges:

SPICE PMOS

- Junction Overlap Charges
- Bulk Junction Charges

Junction Overlap Charges

The block calculates the following junction overlap charges:

- $Q_{S G}=C G S O *{ }^{*}$ WIDTH $^{*} V_{s g}$

Where:

- $Q_{S G}$ is the gate-source overlap charge.
- CGSO is the G-S overlap capacitance, CGSO parameter value.
- WIDTH is the Width of channel, WIDTH parameter value.
- $Q_{D G}=C G D O * W I D T H^{*} V_{d g}$

Where:

- $Q_{D G}$ is the gate-drain overlap charge.
- $C G D O$ is the G-D overlap capacitance, CGDO parameter value.
- $Q_{B G}=C G B O^{*}\left(L E N G T H-2^{*} L D\right)^{*} V_{b g}$

Where:

- $Q_{B G}$ is the gate-bulk overlap charge.
- $C G B O$ is the G-B overlap capacitance, CGBO parameter value.
- LENGTH is the Length of channel, LENGTH parameter value.
- $L D$ is the Lateral diffusion, LD parameter value.

Bulk Junction Charges

The block provides the following relationship between the bulk-drain bottom junction charge $Q_{\text {bottom }}$ and the junction voltage $V_{d b}$ after adjusting the applicable model parameters for temperature.

SPICE PMOS

Applicable Range of $\boldsymbol{V}_{\mathrm{db}}$ Values	Corresponding $\mathbf{Q}_{\text {bottom }}$ Equation
$V_{d b}<F C * P B$	$\begin{gathered} Q_{\text {bottom }}=\frac{C B D * P B *\left(1-\left(1-\frac{V_{d b}}{P B}\right)^{1-M J}\right)}{1-M J} \text { if } C B D>0 \\ Q_{\text {bottom }}=\frac{C J * A D * P B *\left(1-\left(1-\frac{V_{d b}}{P B}\right)^{1-M J}\right)}{1-M J} \text { otherwise. } \end{gathered}$
$V_{d b} \geq F C^{*} P B$	$\begin{aligned} & Q_{\text {bottom }}=C B D^{*} \\ & \left(F 1+\frac{F 3 *\left(V_{d b}-F C * P B\right)+\frac{M J *\left(V_{d b}^{2}-(F C * P B)^{2}\right)}{2 * P B}}{F 2}\right) \end{aligned}$ if $C B D>0$. $\begin{aligned} & Q_{\text {bottom }}=C J * A D * \\ &\left(F 1+\frac{F 3 *\left(V_{d b}-F C * P B\right)+\frac{M J *\left(V_{d b}^{2}-(F C * P B)^{2}\right)}{2 * P B}}{F 2}\right) \end{aligned}$ otherwise.

SPICE PMOS

Where:

- $P B$ is the Bulk junction potential, $\mathbf{P B}$ parameter value.
- $F C$ is the Capacitance coefficient FC parameter value.
- $C B D$ is the Zero-bias BD capacitance, CBD parameter value.
- $C J$ is the Bottom junction cap per area, CJ parameter value.
- $A D$ is the Area of drain, AD parameter value.
- MJ is the Bottom grading coefficient, MJ parameter value.
- $F 1=\frac{P B^{*}\left(1-(1-F C)^{1-M J}\right)}{1-M J}$
- $F 2=(1-F C)^{1+M J}$
- $F 3=1-F C *(1+M J)$

The block uses the equations in the preceding table to calculate the bulk-source bottom junction charge, with the following substitutions:

- $V_{s b}$ replaces $V_{d b}$.
- $A S$ (the Area of source, AS parameter value) replaces $A D$.
- CBS (the Zero-bias BS capacitance, CBS parameter value) replaces $C B D$.

The block provides the following relationship between the bulk-drain sidewall junction charge $Q_{\text {sidewall }}$ and the junction voltage $V_{d b}$ after adjusting the applicable model parameters for temperature.

SPICE PMOS

Applicable Range of $\boldsymbol{V}_{\mathrm{db}}$ Values	Corresponding $\boldsymbol{Q}_{\text {sidewall }}$ Equation
$V_{d b}<F C^{*} P B$	$Q_{\text {sidewall }}=\frac{C J S W^{*} P D^{*} P B^{*}\left(1-\left(1-\frac{V_{d b}}{P B}\right)^{1-M J S W}\right)}{1-M J S W}$
$V_{d b} \geq F C^{*} P B$	$Q_{\text {sidewall }}=C J S W^{* P D^{*}}$
$\left(\begin{array}{c}F 1+\frac{F 3 *\left(V_{d b}-F C^{*} P B\right)+\frac{M J S W *\left(V_{d b}^{2}-(F C * P B)^{2}\right)}{2 * P B}}{F 2}\end{array}\right.$	

Where:

- $C J S W$ is the Side jct cap/area of jct perimeter, CJSW parameter value.
- $P D$ is the Perimeter of drain, AD parameter value.
- MJSW is the Side grading coefficient, MJSW parameter value.
- $F 1=\frac{P B^{*}\left(1-(1-F C)^{1-M J S W}\right)}{1-M J S W}$
- $F 2=(1-F C)^{1+M J S W}$
- $F 3=1-F C *(1+M J S W)$

SPICE PMOS

The block uses the equations in the preceding table to calculate the bulk-source sidewall junction charge and the sidewall junction voltage, with the following substitutions:

- $V_{s b}$ replaces $V_{d b}$.
- $P S$ (the Perimeter of source, PS parameter value) replaces $P D$.

Temperature Dependence

Several transistor parameters depend on temperature. There are two ways to specify the transistor temperature:

- When you select Device temperature for the Model temperature dependence using parameter, the transistor temperature is

$$
T=T_{C}+T_{O}
$$

where:

- T_{C} is the Circuit temperature parameter value from the SPICE Environment Parameters block. If this block doesn't exist in the circuit, T_{C} is the default value of this parameter.
- T_{O} is the Offset local circuit temperature, TOFFSET parameter value.
- When you select Fixed temperature for the Model temperature dependence using parameter, the transistor temperature is the Fixed circuit temperature, TFIXED parameter value.

The block provides the following relationship between the transconductance $K P$ and the transistor temperature T :

$$
K P(T)=\frac{K P}{\left(T / T_{\text {meas }}\right)^{3 / 2}}
$$

where:

SPICE PMOS

- KP is the Transconductance, KP parameter value.
- $T_{\text {meas }}$ is the Parameter extraction temperature, TMEAS parameter value.

The block provides the following relationship between the surface potential PHI and the transistor temperature T :

$$
\begin{gathered}
\operatorname{PHI}(T)=\frac{T}{T_{\text {meas }}}\left(\operatorname{PHI}+\frac{k T_{\text {meas }}}{q}\left(\log \left(\frac{T_{\text {meas }}}{300.15}\right)^{3}+\frac{q}{k}\left(\frac{1.115}{300.15}-\frac{E G_{T_{\text {meas }}}}{T_{\text {meas }}}\right)\right)\right) \\
\quad-\frac{k T}{q}\left(\log \left(\frac{T}{300.15}\right)^{3}+\frac{q}{k}\left(\frac{1.115}{300.15}-\frac{E G_{T}}{T}\right)\right)
\end{gathered}
$$

where:

- $E G_{T_{\text {meas }}}=1.16 \mathrm{eV}-\left(7.02 e-4 * T_{\text {meas }}{ }^{2}\right) /\left(T_{\text {meas }}+1108\right)$
- $E G_{T}=1.16 \mathrm{eV}-\left(7.02 e-4^{*} T^{2}\right) /(T+1108)$

The block provides the following relationship between the built-in voltage VBI and the transistor temperature T :

$$
\begin{aligned}
V B I(T)=V T O & +M T Y P E *\left(\frac{P H I(T)-P H I}{2}-G A M M A \sqrt{P H I}\right) \\
& +\frac{E G_{T_{\text {meas }}}-E G_{T}}{2}
\end{aligned}
$$

where:

- $V T O$ is:
- The Threshold voltage, VTO parameter value, if this parameter has a numerical value.

SPICE PMOS

- $\Phi-3.25+E G_{T_{\text {meas }}} / 2+$ MTYPE *PHI $/ 2-$ NSS * $q *$ TOX $/\left(3.9 * \varepsilon_{0}\right)$ + MTYPE $*(G A M M A * \sqrt{P H I}+P H I)$, if Threshold voltage, VTO is NaN and you specify values for both the Oxide thickness, TOX and Substrate doping, NSUB parameters.
- Φ is:
- 3.2, if $T P G$ (the Gate type?, TPG parameter value) is 0.
- $3.25+E G_{T_{\text {meas }}} / 2-M T Y P E * T P G * E G_{T_{\text {meas }}} / 2$, otherwise.
- GAMMA is:
- The Bulk threshold, GAMMA parameter value, if this parameter has a numerical value.
- TOX $* \sqrt{2 * 11.7 * \varepsilon_{0} * q * N S U B} /\left(3.9 * \varepsilon_{0}\right)$, if Bulk threshold, GAMMA is NaN and you specify values for both the Oxide thickness, TOX and Substrate doping, NSUB parameters.

The block provides the following relationship between the bulk saturation current $I S$ and the transistor temperature T :

$$
I S(T)=I S * e^{\frac{-q E G_{T}}{N D * K T}+\frac{q E G_{T_{\text {meas }}}}{N D^{*} k T_{\text {meas }}}}
$$

where:

- $N D$ is the Emission coefficient, ND parameter value.
- $I S$ is the Bulk saturation current, IS parameter value.

The block provides the following relationship between the bulk junction saturation current density $J S$ and the transistor temperature T :

$$
J S(T)=J S * e^{\frac{-q E G_{T}}{N D^{*} k T}+\frac{q E G_{T_{\text {meas }}}}{N D^{*} k T_{\text {meas }}}}
$$

SPICE PMOS

where:

- $J S$ is the Bulk jct sat current density, JS parameter value.

The block provides the following relationship between the bulk junction potential $P B$ and the transistor temperature T :

$$
P B(T)=\frac{P B+\frac{k T_{\text {meas }}}{q}\left(\log \left(\frac{T_{\text {meas }}}{300.15}\right)^{3}+\frac{q}{k}\left(\frac{1.115}{300.15}-\frac{E G_{T_{\text {meas }}}}{T}\right)\right)}{T_{\text {meas }} / T},
$$

where:

- $P B$ is the Bulk junction potential, $\mathbf{P B}$ parameter value.

The block provides the following relationship between the bulk-drain junction capacitance $C B D$ and the transistor temperature T :

$$
C B D(T)=C B D \frac{p b o+M J *\left(4 * 10^{4} *(T-300.15) * p b o-(P B(T)-p b o)\right)}{p b o+M J *\left(4 * 10^{4} *\left(T_{\text {meas }}-300.15\right) * p b o-(P B-p b o)\right)}
$$

where:

- $C B D$ is the Zero-bias BD capacitance, CBD parameter value.
- MJ is the Bottom grading coefficient, MJ parameter value.

SPICE PMOS

The block uses the $C B D(T)$ equation to calculate:

- The bulk-source junction capacitance by substituting $C B S$ (the Zero-bias BS capacitance, CBS parameter value) for $C B D$.
- The bottom junction capacitance by substituting CJ (the Bottom junction cap per area, CJ parameter value) for $C B D$.

The block provides the following relationship between the sidewall junction capacitance $C J S W$ and the transistor temperature T :

$$
\operatorname{CJSW}(T)=C J S W \frac{p b o+M J S W *\left(4 * 10^{4} *(T-300.15) * p b o-(P B(T)-p b o)\right)}{p b o+M J S W *\left(4 * 10^{4} *\left(T_{\text {meas }}-300.15\right) * p b o-(P B-p b o)\right)}
$$

where:

- MJSW is the Side grading coefficient, MJSW parameter value.

Basic Assumptions and Limitations

The model is based on the following assumptions:

- The PMOS block does not support noise analysis.
- The PMOS block applies initial conditions across junction capacitors and not across the block ports.

SPICE PMOS

Dialog
 Box and Parameters

Model Selection Tab

MOS model

Select one of the following MOSFET model options:

- Level 1 MOS - Use the "Level 1 Drain Current Model" on page $2-512$. This is the default option.
- Level 3 MOS - Use the "Level 3 Drain Current Model" on page 2-515.

SPICE PMOS

Dimensions Tab

Device area factor, AREA

The transistor area. This value multiplies the following parameter values:

- Transconductance, KP
- Bulk saturation current, IS
- Bulk jct sat current density, JS
- Zero-bias BD capacitance, CBD
- Zero-bias BS capacitance, CBS

SPICE PMOS

- G-S overlap capacitance, CGSO
- G-D overlap capacitance, CGDO
- G-B overlap capacitance, CGBO
- Bottom junction cap per area CJ
- Side jct cap/area of jct perimeter CJSW

It divides the following parameter values:

- Drain resistance, RD
- Source resistance, RS
- Sheet resistance, RSH

The default value is 1 . The value must be greater than 0 .

Number of parallel devices, SCALE

The number of parallel MOS instances for this device. This parameter multiplies the output current and device charge. The default value is 1 . The value must be greater than 0 .

Length of channel, LENGTH

Length of the channel between the source and drain. The default value is $1 \mathrm{e}-04 \mathrm{~m}$.

Width of channel, WIDTH

Width of the channel between the source and drain. The default value is $1 \mathrm{e}-04 \mathrm{~m}$.

Area of drain, AD

Area of the transistor drain diffusion. The default value is $0 \mathrm{~m}^{2}$. The value must be greater than or equal to 0 .

Area of source, AS

Area of the transistor source diffusion. The default value is $0 \mathrm{~m}^{2}$. The value must be greater than or equal to 0 .

SPICE PMOS

Perimeter of drain, PD

Perimeter of the transistor drain diffusion. The default value is 0 m .

Perimeter of source, PS

Perimeter of the transistor source diffusion. The default value is 0 m .

Resistors Tab

Drain resistance, RD

The transistor drain ohmic resistance. The default value is 0.01Ω. If you set this parameter to $\mathrm{NaN} \Omega$, this value means

SPICE PMOS

the parameter is unspecified, so the block calculates the drain resistance as described in "Resistance Calculations" on page $2-509$. The value must be equal to 0 or greater than or equal to Rmin. Rmin is a built-in model constant whose value is $1 \mathrm{e}-12$.

Source resistance, RS

The transistor source ohmic resistance. The default value is $1 \mathrm{e}-4 \Omega$. If you set this parameter to $\mathrm{NaN} \Omega$, this value means the parameter is unspecified, so the block calculates the drain resistance as described in "Resistance Calculations" on page $2-509$. The value must be equal to 0 or greater than or equal to Rmin. Rmin is a built-in model constant whose value is $1 \mathrm{e}-12$.

Sheet resistance, RSH

Resistance per square of the transistor source and drain. The default value is Nan Ω. This value means the parameter is unspecified. The block only uses this parameter value if you do not specify one or both of the Drain resistance, RD and Source resistance, RS parameter values, as described in "Resistance Calculations" on page 2-509. The value must be greater than or equal to 0 .

Number of drain squares, NRD
Number of squares of resistance that make up the transistor drain diffusion. The default value is 1 . The value must be greater than or equal to 0 . The block only uses this parameter value if you do not specify one or both of the Drain resistance, RD and Source resistance, RS parameter values, as described in "Resistance Calculations" on page 2-509.

Number of source squares, NRS

Number of squares of resistance that make up the transistor source diffusion. The default value is 1 . The value must be greater than or equal to 0 . The block only uses this parameter value if you do not specify one or both of the Drain resistance, RD and Source resistance, RS parameter values, as described in "Resistance Calculations" on page 2-509.

SPICE PMOS

DC Currents Tab

Threshold voltage, VTO

The gate-source voltage above which the transistor produces a nonzero drain current. The default value is 0 V . If you assign this parameter a value of NaN , the block calculates the value from the specified values of the Oxide thickness, TOX and Substrate doping, NSUB parameters. For more information about this calculation, see "Temperature Dependence" on page 2-444.

Transconductance, KP

The derivative of drain current with respect to gate voltage. The default value is $2 \mathrm{e}-05 \mathrm{~A} / \mathrm{V}^{2}$. The value must be greater than

SPICE PMOS

or equal to 0 . If you assign this parameter a value of NaN , the block calculates the value from the specified values of the Oxide thickness, TOX and Substrate doping, NSUB parameters. For more information about this calculation, see "Level 1 Drain Current Model" on page 2-430 or "Level 3 Drain Current Model" on page $2-515$ as appropriate for the selected value of the MOS model parameter.

Bulk threshold, GAMMA

Body effect parameter, which relates the threshold voltage, VTH, to the body bias, VBS, as described in "Level 1 Drain Current
Model" on page 2-430. The default value is $0 \sqrt{V}$. The value must be greater than or equal to 0 . If you assign this parameter a value of NaN, the block calculates the value from the specified values of the Oxide thickness, TOX and Substrate doping, NSUB parameters. For more information about this calculation, see "Level 1 Drain Current Model" on page 2-430 or "Level 3 Drain Current Model" on page 2-515 as appropriate for the selected value of the MOS model parameter.

Surface potential, PHI

Twice the voltage at which the surface electron concentration becomes equal to the intrinsic concentration and the device transitions between depletion and inversion conditions. The default value is 0.6 V . The value must be greater than or equal to 0 . If you assign this parameter a value of NaN , the block calculates the value from the specified values of the Oxide thickness, TOX and Substrate doping, NSUB parameters. For more information about this calculation, see "Level 1 Drain Current Model" on page 2-430 or "Level 3 Drain Current Model" on page $2-515$ as appropriate for the selected value of the MOS model parameter.

Channel modulation, LAMBDA

The channel-length modulation. This parameter is only visible when you select Level 1 MOS for the MOS model parameter. The default value is $01 / \mathrm{V}$.

SPICE PMOS

Bulk saturation current, IS

The magnitude of the current that the junction approaches asymptotically for very large reverse bias levels. The default value is $1 \mathrm{e}-14 \mathrm{~A}$. The value must be greater than or equal to 0 .

Bulk jet sat current density, JS

The magnitude of the current per unit area that the junction approaches asymptotically for very large reverse bias levels. The default value is $0 \mathrm{~A} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

Emission coefficient, ND

The transistor emission coefficient or ideality factor. The default value is 1 . The value must be greater than 0 .

Width effect on threshold, DELTA

The factor that controls the effect of transistor width on threshold voltage. This parameter is only visible when you select Level 3 MOS for the MOS model parameter. The default value is 0 .

Max carrier drift velocity, VMAX

The maximum drift velocity of the carriers. This parameter is only visible when you select Level 3 MOS for the MOS model parameter. The default value is $0 \mathrm{~m} / \mathrm{s}$.

Fast surface state density, NFS

The fast surface state density adjusts the drain current for the mobility reduction caused by the gate voltage. This parameter is only visible when you select Level 3 MOS for the MOS model parameter. The default value is $01 / \mathrm{cm}^{2}$.

Vds dependence threshold volt, ETA

The coefficient that controls how the threshold voltage depends on the drain-source voltage in the drain current calculation. This parameter is only visible when you select Level 3 MOS for the MOS model parameter. The default value is 0 .

Vgs dependence on mobility, THETA

The coefficient that controls how the mobility affects the gate voltage in the drain current calculation. This parameter is
only visible when you select Level 3 MOS for the MOS model parameter. The default value is $01 / \mathrm{V}$.

Mobility modulation, KAPPA

The coefficient that controls how the mobility affects the channel length in the drain current calculation. This parameter is only visible when you select Level 3 MOS for the MOS model parameter. The default value is 0.2 .

C-V Tab

SPICE PMOS

Model junction capacitance

Select one of the following options for modeling the junction capacitance:

- No - Do not include junction capacitance in the model. This is the default option.
- Yes - Specify zero-bias junction capacitance, junction potential, grading coefficient, forward-bias depletion and capacitance coefficient.

G-S overlap capacitance, CGSO

Gate-source capacitance due to the diffusion that occurs when the device operates in depletion mode. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is $0 \mathrm{~F} / \mathrm{m}$. The value must be equal to 0 or greater than or equal to Cmin. Cmin is a built-in model constant whose value is $1 e-18$.

G-D overlap capacitance, CGDO

Gate-drain capacitance due to the diffusion that occurs when the device operates in depletion mode. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is $0 \mathrm{~F} / \mathrm{m}$. The value must be equal to 0 or greater than or equal to Cmin. Cmin is a built-in model constant whose value is $1 \mathrm{e}-18$.

G-B overlap capacitance, CGBO

Gate-base capacitance due to the diffusion that occurs when the device operates in depletion mode. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is $0 \mathrm{~F} / \mathrm{m}$. The value must be equal to 0 or greater than or equal to Cmin. Cmin is a built-in model constant whose value is $1 \mathrm{e}-18$.

Zero-bias BD capacitance, CBD

The value of the capacitance placed between the base and the drain. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 0

SPICE PMOS

F. The value must be equal to 0 or greater than or equal to Cmin. Cmin is a built-in model constant whose value is $1 \mathrm{e}-18$.

Zero-bias BS capacitance, CBS

The value of the capacitance placed between the base and the source. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 0 F . The value must be equal to 0 or greater than or equal to Cmin. Cmin is a built-in model constant whose value is $1 \mathrm{e}-18$.

Bottom junction cap per area CJ

Zero-bias bulk junction bottom capacitance per junction area. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is $0 \mathrm{~F} / \mathrm{m}^{2}$. The value must be equal to 0 or greater than or equal to Cmin. Cmin is a built-in model constant whose value is 1e-18.

Bottom grading coefficient, MJ

The transistor bottom grading coefficient. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 0.5 . The value must be equal to 0 or less than MGmax. MGmax is a built-in model constant whose value is 0.9 .

Side jct cap/area of jet perimeter CJSW

Zero-bias bulk junction sidewall capacitance per junction perimeter. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is $0 \mathrm{~F} / \mathrm{m}$. The value must be equal to 0 or greater than or equal to Cmin. Cmin is a built-in model constant whose value is $1 \mathrm{e}-18$.

Side grading coefficient, MJSW

The transistor sidewall grading coefficient. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 0.5 . The value must be equal to 0 or less than MGmax. MGmax is a built-in model constant whose value is 0.9 .

SPICE PMOS

Bulk junction potential, PB

The potential across the bulk junction. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 0.8 V . The value must be equal to 0 or greater than or equal to VJmin. VJmin is a built-in model constant whose value is 0.01 .

Capacitance coefficient FC

The fitting coefficient that quantifies the decrease of the depletion capacitance with applied voltage. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 0.5 . The value must be equal to 0 or less than or equal to FCmax. FCmax is a built-in model constant whose value is 0.95 .

Specify initial condition

Select one of the following options for specifying an initial condition:

- No - Do not specify an initial condition for the model. This is the default option.
- Yes - Specify the initial diode voltage.

Note The PMOS block applies the initial diode voltage across the junction capacitors and not across the ports.

Initial condition voltage ICVDS

Drain-source voltage at the start of the simulation. This parameter is only visible when you select Yes for the Model junction capacitance and $Y e s$ for the Specify initial condition parameter. The default value is 0 V .

Initial condition voltage ICVGS

Gate-source voltage at the start of the simulation. This parameter is only visible when you select Yes for the Model junction
capacitance and Yes for the Specify initial condition parameter. The default value is 0 V .

Initial condition voltage ICVBS

Bulk-source voltage at the start of the simulation. This parameter is only visible when you select Yes for the Model junction capacitance and Yes for the Specify initial condition parameter. The default value is 0 V .

Process Tab

SPICE PMOS

Oxide thickness, TOX

Thickness of the gate oxide. The default value is NaN m . The value must be greater than or equal to 0 .

> Note When you select Level 3 MOS for the MOS model parameter, the block uses a value of $1 e-7$ rather than NaN by default.

Lateral diffusion, LD

Length of lateral diffusion. The default value is 0 m .

Substrate doping, NSUB

Substrate doping. The default value is $\mathrm{NaN} 1 / \mathrm{cm}^{3}$. The value must be greater than or equal to 1.45 e 10 (the carrier concentration of intrinsic silicon).

Surface state density, NSS

Substrate doping. The default value is $01 / \mathrm{cm}^{2}$.
Surface mobility, U0
Zero-bias surface mobility coefficient. The default value is 600 $\mathrm{cm}^{2} / \mathrm{V} / \mathrm{s}$.

Junction depth, XJ
Junction depth. This parameter is only visible when you select Level 3 MOS for the MOS model parameter. The default value is 0 m .

Gate type?,TPG

Select one of the following MOSFET gate materials (as compared to the substrate):

- Opposite of substrate - The gate material is the opposite of the substrate. This means that TPG $=1$ in the device equations. This is the default option.
- Same as substrate - The gate material is the same as the substrate. This means that $\mathrm{TPG}=-1$ in the device equations.

SPICE PMOS

- Aluminum - The gate material is aluminum. This means that $T P G=0$ in the device equations.

Temperature Tab

Model temperature dependence using

Select one of the following options for modeling the diode temperature dependence:

- Device temperature - Use the device temperature, which is the Circuit temperature value plus the Offset local circuit temperature, TOFFSET value. The Circuit temperature value comes from the SPICE Environment Parameters block, if

SPICE PMOS

one exists in the circuit. Otherwise, it comes from the default value for this block.

- Fixed temperature - Use a temperature that is independent of the circuit temperature to model temperature dependence.

Offset local circuit temperature, TOFFSET

The amount by which the transistor temperature differs from the circuit temperature. This parameter is only visible when you select Device temperature for the Model temperature dependence using parameter. The default value is 0 K .

Fixed circuit temperature, TFIXED
The temperature at which to simulate the transistor. This parameter is only visible when you select Fixed temperature for the Model temperature dependence using parameter. The default value is 300.15 K . The value must be greater than 0.

Parameter extraction temperature, TMEAS
The temperature at which the transistor parameters were measured. The default value is 300.15 K . The value must be greater than 0 .

Ports
 The block has the following ports:

G
Electrical conserving port associated with the transistor gate terminal.

D
Electrical conserving port associated with the transistor drain terminal.

Electrical conserving port associated with the transistor source terminal.

B
Electrical conserving port associated with the transistor bulk terminal.

SPICE PMOS

References
[1] G. Massobrio and P. Antognetti. Semiconductor Device Modeling with SPICE. 2nd Edition, McGraw-Hill, 1993. Chapter 3.

See Also SPICE NMOS

SPICE PNP

Purpose Model Gummel-Poon PNP Transistor

Library

SPICE-Compatible Components/Semiconductor Devices

Description The PNP block represents a SPICE-compatible four-terminal

Gummel-Poon PNP transistor. The substrate port is connected to the transistor body using a capacitor, so these devices are equivalent to a three-terminal transistor when you connect the substrate port to any other port and use the default value of zero for the C-S junction capacitance, CJS parameter.

The PNP block model includes the following components:

- "Current-Voltage and Base Charge Model" on page 2-548
- "Base Resistance Model" on page 2-552
- "Transit Charge Modulation Model" on page 2-552
- "Junction Charge Model" on page 2-553
- "Temperature Dependence" on page 2-555

Current-Voltage and Base Charge Model

The current-voltage relationships and base charge relationships for the transistor are calculated after adjusting the applicable model parameters for temperature as described in the following sections:

- Emitter-Base and Collector-Base Junction Currents on page 548
- Terminal Currents on page 551
- Base Charge Model on page 551

Emitter-Base and Collector-Base Junction Currents
The base-emitter junction current is calculated using the following equations:

- When $V_{E B}>80 * V_{T F}$:

$$
\begin{aligned}
& I_{e b f}=I S *\left(\left(\frac{V_{E B}}{V_{T F}}-79\right) * e^{80}-1\right)+G_{\min } * V_{E B} \\
& I_{e b e}=I S E *\left(\left(V_{E B}-80 * V_{T F}+V_{T E}\right) * \frac{e^{\left(80^{*} V_{T F} N_{T E}\right)}}{V_{T E}}-1\right)
\end{aligned}
$$

- When $V_{E B} \leq 80 * V_{T F}$

$$
\begin{aligned}
& I_{e b f}=I S *\left(e^{\left(V_{E B} V_{T E}\right)}-1\right)+G_{\min } * V_{E B} \\
& I_{\text {ebe }}=I S E *\left(e^{\left(V_{E B} V_{T E}\right)}-1\right)
\end{aligned}
$$

The base-collector junction current is calculated using the following equations:

- When $V_{C B}>80 * V_{T R}$:

$$
\begin{aligned}
& I_{c b r}=I S *\left(\left(\frac{V_{C B}}{V_{T R}}-79\right) * e^{80}-1\right)+G_{\min } * V_{C B} \\
& I_{c b c}=I S C *\left(\left(V_{C B}-80 * V_{T R}+V_{T C}\right) * \frac{e^{\left(80 * V_{T R} V_{T C}\right)}}{V_{T C}}-1\right)
\end{aligned}
$$

- When $V_{C B} \leq 80 * V_{T R}$

$$
\begin{aligned}
& I_{c b r}=I S *\left(e^{\left(V_{C B} V_{\text {TR }}\right)}-1\right)+G_{\min } * V_{C B} \\
& I_{c b c}=I S C *\left(e^{\left(V_{C B} V_{T C}\right)}-1\right)
\end{aligned}
$$

In the preceding equations:

SPICE PNP

- $V_{E B}$ is the emitter-base voltage and $V_{C B}$ is the collector-base voltage.
$V_{T E}=N E * k * T / q, V_{T C}=N C * k * T / q, V_{T F}=N F * k * T / q$, and
- $V_{T R}=N R^{*} k^{*} T / q$.
- ISC and ISE are the B-C leakage current, ISC and B-E leakage current, ISE parameter values, respectively.
- $N E, N C, N F$, and $N R$ are the B-E emission coefficient, NE, B-C emission coefficient, NC, Forward emission coefficient, NF and Reverse emission coefficient, NR parameter values, respectively.
- q is the elementary charge on an electron.
- k is the Boltzmann constant.
- T is the transistor temperature:
- If you select Device temperature for the Model temperature dependence using parameter, T is the sum of the Circuit temperature value plus the Offset local circuit temperature, TOFFSET parameter value. The Circuit temperature value comes from the SPICE Environment Parameters block, if one exists in the circuit. Otherwise, it comes from the default value for this block.
- If you select Fixed temperature for the Model temperature dependence using parameter, T is the Fixed circuit temperature, TFIXED parameter value.
- $G_{\text {min }}$ is the minimum conductance. By default, $G_{\text {min }}$ matches the Minimum conductance GMIN parameter of the SPICE Environment Parameters block, whose default value is $1 \mathrm{e}-12$. To change $G_{m i n}$, add a SPICE Environment Parameters block to your model and set the Minimum conductance GMIN parameter to the desired value.

Terminal Currents

The terminal currents, I_{B} and I_{C} are the base and collector currents, defined as positive into the device. They are calculated as:

$$
\begin{aligned}
& I_{B}=-\left(\frac{I_{e b f}}{B F}+I_{e b e}+\frac{I_{c b r}}{B R}+I_{c b c}\right) \\
& I_{C}=-\left(\frac{I_{e b f}-I_{c b r}}{q_{b}}-\frac{I_{c b r}}{B R}-I_{\mathrm{cbc}}\right)
\end{aligned}
$$

where $B F$ and $B R$ are the Forward beta, BF and Reverse beta, BR parameter values, respectively.

Base Charge Model

The base charge, q_{b}, is calculated using the following equations:

$$
\begin{aligned}
& q_{b}=\frac{q_{1}}{2}\left(1+\sqrt{0.5 *\left(\sqrt{\left(1+4^{*} q_{2}-e p s\right)^{2}+e p s^{2}}+1+4^{*} q_{2}-e p s\right)+e p s}\right) \\
& q_{1}=\left(1-\frac{V_{C B}}{V A F}-\frac{V_{E B}}{V A R}\right)^{-1} \\
& q_{2}=\frac{I_{e b f}}{I K F}+\frac{I_{c b r}}{I K R}
\end{aligned}
$$

where

- $V A F$ and $V A R$ are the Forward Early voltage, VAF and Reverse Early voltage, VAR parameters, respectively.
- IKF and IKR are the Forward knee current, IKF and Reverse knee current, IKR parameter values, respectively.
- eps is $1 \mathrm{e}-4$.

SPICE PNP

Base Resistance Model

The block models base resistance in one of two ways:

- If you use the default value of infinity for the Half base resistance cur, IRB parameter, the PNP block calculates the base resistance $r_{b b}$ as

$$
r_{b b}=R B M+\frac{R B-R B M}{q_{b}}
$$

where:

- $R B M$ is the Minimum base resistance, RBM parameter value.
- $R B$ is the Zero-bias base resistance, $\mathbf{R B}$ parameter value.
- If you specify a finite value for the Half base resistance cur, IRB parameter, the PNP block calculates the base resistance $r_{b b}$ as

$$
r_{b b}=R B M+3 *(R B-R B M) *\left(\frac{\tan z-z}{z * \tan ^{2} z}\right)
$$

where:

$$
z=\frac{\sqrt{1+144 I_{B} /\left(\pi^{2} I R B\right)}-1}{\left(24 / \pi^{2}\right) \sqrt{\left(I_{B} / I R B\right)}}
$$

Transit Charge Modulation Model

If you specify nonzero values for the Coefficient of TF, XTF parameter, the block models transit charge modulation by scaling the Forward transit time, TF parameter value as follows:

SPICE PNP

$$
T F_{\mathrm{mod}}=\frac{T F *\left[1+X T F * e^{V_{C B}\left(1.44 V_{T F}\right)}\left(\frac{I_{E B}}{I_{E B}+I T F}\right)^{2}\right]}{q_{b}}
$$

where ITF is the Coefficient of TF, ITF parameter value.

Junction Charge Model

The PNP block lets you model junction charge. The collector-base charge $Q_{c b}$ and the emitter-base charge $Q_{e b}$ depend on an intermediate value, $Q_{d e p}$ as follows, after adjusting the applicable model parameters for temperature:

- For the internal base-emitter junctions:

$$
Q_{e b}=T F_{\text {mod }} * I_{e b}+Q_{d e p}
$$

- For the internal base-collector junctions:

$$
Q_{c b}=T R^{*} I_{c b}+X C J C * Q_{d e p}
$$

- For the external base-collector junctions:

$$
Q_{c b_{e t}}=(1-X C J C) * Q_{d e p}
$$

$Q_{d e p}$ depends on the junction voltage, $V_{j c t}\left(V_{E B}\right.$ for the emitter-base junction and $V_{C B}$ for the collector-base junction) as follows.

SPICE PNP

Applicable Range of $\boldsymbol{V}_{\text {ict }}$ Values	Corresponding $\mathbf{Q}_{\text {dep }}$ Equation
$V_{\text {jct }}<F C^{*} V J$	$Q_{\text {dep }}=C_{\text {jct }} * V J * \frac{1-\left(1-V_{\text {jct }} / V J\right)^{(1-M J)}}{1-M J}$
$V_{j c t} \geq F C^{*} V J$	$Q_{\text {dep }}=C_{\text {jct }} *\left[F 1+\frac{\left.F 3 *\left(V_{\text {jct }}-F C * V J\right)+\frac{M J *\left[V_{\text {jct }}{ }^{2}-(F C * V J)^{2}\right]}{2 * V J}\right]}{F 2}\right]$
	Where.

- $F C$ is the Capacitance coefficient FC parameter value.
- $V J$ is:
- The B-E built-in potential, VJE parameter value for the emitter-base junction.
- The B-C built-in potential, VJC parameter value for the collector-base junction.
- MJ is:
- The B-E exponential factor, MJE parameter value for the emitter-base junction.
- The B-C exponential factor, MJC parameter value for the collector-base junction.
- $C_{j c t}$ is:
- The B-E depletion capacitance, CJE parameter value for the emitter-base junction.

SPICE PNP

- The B-C depletion capacitance, CJC parameter value for the collector-base junction.
- $F 1=V J *\left(1-(1-F C)^{(1-M J)}\right) /(1-M J)$
- $F 2=(1-F C)^{(1+M J)}$
- $F 3=1-F C^{*}(1+M J)$

The collector-substrate charge $Q_{s c}$ depends on the collector-substrate voltage $V_{s c}$ as follows, after adjusting the applicable model parameters for temperature.

Applicable Range of $\boldsymbol{V}_{s c}$ Values	Corresponding $\mathbf{Q}_{s c}$ Equation
$V_{s c}<0$	$Q_{s c}=C J S * V J S *\left(\frac{1-\left(1-V_{s c} / V J S\right)^{(1-M J S)}}{1-M J S}\right)$
$V_{s c} \geq 0$	$Q_{s c}=C J S *\left(1+M J S * V_{s c} /(2 * V J S)\right) * V_{s c}$

where:

- CJS is the C-S junction capacitance, CJS parameter value.
- VJS is the Substrate built-in potential, VJS parameter value.
- MJS is the Substrate exponential factor, MJS parameter value.

Temperature Dependence

Several transistor parameters depend on temperature. There are two ways to specify the transistor temperature:

SPICE PNP

- When you select Device temperature for the Model temperature dependence using parameter, the transistor temperature is

$$
T=T_{C}+T_{O}
$$

where:

- T_{C} is the Circuit temperature parameter value from the SPICE Environment Parameters block. If this block doesn't exist in the circuit, T_{C} is the default value of this parameter.
- T_{O} is the Offset local circuit temperature, TOFFSET parameter value.
- When you select Fixed temperature for the Model temperature dependence using parameter, the transistor temperature is the Fixed circuit temperature, TFIXED parameter value.

The block provides the following relationship between the saturation current $I S$ and the transistor temperature T :

$$
I S(T)=I S *\left(T / T_{\text {meas }}\right)^{X T I} * e^{\left(\frac{T}{T_{\text {meas }}}-1\right) * \frac{E G}{V_{t}}}
$$

where:

- IS is the Transport saturation current, IS parameter value.
- $T_{\text {meas }}$ is the Parameter extraction temperature, TMEAS parameter value.
- $X T I$ is the Temperature exponent for IS, XTI parameter value.
- $E G$ is the Energy gap, EG parameter value.
- $V_{t}=k T / q$.

The block provides the following relationship between the base-emitter junction potential VJE and the transistor temperature T :

SPICE PNP

$$
\operatorname{VJE}(T)=\operatorname{VJE} *\left(\frac{T}{T_{\text {meas }}}\right)-\frac{3 * k^{*} T}{q} * \log \left(\frac{T}{T_{\text {meas }}}\right)-\left(\frac{T}{T_{\text {meas }}}\right) * E G_{T_{\text {mess }}}+E G_{T}
$$

where:

- VJE is the B-E built-in potential, VJE parameter value.
- $E G_{T_{\text {mess }}}=1.16 \mathrm{eV}-\left(7.02 e-4 * T_{\text {meas }}{ }^{2}\right) /\left(T_{\text {meas }}+1108\right)$
- $E G_{T}=1.16 \mathrm{eV}-\left(7.02 e-4 * T^{2}\right) /(T+1108)$

The block uses the $\operatorname{VJE}(T)$ equation to calculate the base-collector junction potential by substituting $V J C$ (the B-C built-in potential, VJC parameter value) for VJE.

The block provides the following relationship between the base-emitter junction capacitance CJE and the transistor temperature T :

$$
\operatorname{CJE}(T)=\operatorname{CJE} *\left[1+M J E *\left(400 e-6 *\left(T-T_{\text {meas }}\right)-\frac{V J E(T)-V J E}{V J E}\right)\right]
$$

where:

- CJE is the B-E depletion capacitance, CJE parameter value.
- MJE is the B-E exponential factor, MJE parameter value.

The block uses this equation to calculate the base-collector junction capacitance by substituting $C J C$ (the B-C depletion capacitance, CJC parameter value) for $C J E$ and $M J C$ (the $\mathbf{B}-\mathbf{C}$ exponential factor, MJC parameter value) for MJE.

The block provides the following relationship between the forward and reverse beta and the transistor temperature T :

SPICE PNP

$$
\beta(T)=\beta *\left(\frac{T}{T_{\text {meas }}}\right)^{X T B}
$$

where:

- β is the Forward beta, BF or Reverse beta, BR parameter value.
- XTB is the Beta temperature exponent, XTB parameter value.

The block provides the following relationship between the base-emitter leakage current ISE and the transistor temperature T :

$$
\operatorname{ISE}(T)=\operatorname{ISE} *\left(\frac{T}{T_{\text {meas }}}\right)^{-\mathrm{XTB}} *\left(\frac{\mathrm{IS}(\mathrm{~T})}{\mathrm{IS}}\right)^{1 / N E}
$$

where:

- ISE is the B-E leakage current, ISE parameter value.
- $N E$ is the B-E emission coefficient, NE parameter value.

The block uses this equation to calculate the base-collector leakage current by substituting ISC (the B-C leakage current, ISC parameter value) for $I S E$ and $N C$ (the B-C emission coefficient, NC parameter value) for $N E$.

[^7]
Dialog
 Box and Parameters

Main Tab

Device area, AREA

The transistor area. This value multiplies the following parameter values:

- Transport saturation current, IS
- Forward knee current, IKF
- B-E leakage current, ISE
- Reverse knee current, IKR
- B-C leakage current, ISC

SPICE PNP

- Half base resistance cur, IRB
- B-E depletion capacitance, CJE
- Coefficient of TF, ITF
- B-C depletion capacitance, CJC
- C-S junction capacitance, CJS

It divides the following parameter values:

- Zero-bias base resistance, RB
- Minimum base resistance, RBM
- Emitter resistance, RE
- Collector resistance, RC

The default value is $1 \mathrm{~m}^{2}$. The value must be greater than 0 .
Number of parallel devices, SCALE
The number of parallel transistors the block represents. This value multiplies the output current and device charges. The default value is 1 . The value must be greater than 0 .

Forward Gain Tab

Transport saturation current, IS

The magnitude of the current at which the transistor saturates. The default value is $1 \mathrm{e}-16 \mathrm{~A} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

Forward beta, BF

The ideal maximum reverse beta. The default value is 100 . The value must be greater than 0 .

SPICE PNP

Forward emission coefficient, NF

The reverse emission coefficient or ideality factor. The default value is 1 . The value must be greater than 0 .

B-E leakage current, ISE

The base-emitter leakage current. The default value is $0 \mathrm{~A} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

B-E emission coefficient, NE

The base-collector emission coefficient or ideality factor. The default value is 1.5 . The value must be greater than 0 .

Forward knee current, IKF
The current value at which forward-beta high-current roll-off occurs. The default value is $0 \mathrm{~A} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 . For this parameter, the software interprets a value of 0 as infinity.

Forward Early voltage, VAF

The forward Early voltage. The default value is 0 V . The value must be greater than or equal to 0 . For this parameter, the software interprets a value of 0 as infinity.

Reverse Gain Tab

Reverse beta, BR

The ideal maximum reverse beta. The default value is 1 . The value must be greater than 0 .

Reverse emission coefficient, NR

The reverse emission coefficient or ideality factor. The default value is 1 . The value must be greater than 0 .

B-C leakage current, ISC

The base-collector leakage current. The default value is $0 \mathrm{~A} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

SPICE PNP

B-C emission coefficient, NC

The base-collector emission coefficient or ideality factor. The default value is 2 . The value must be greater than 0 .

Reverse knee current, IKR

The current value at which reverse-beta high-current roll-off occurs. The default value is $0 \mathrm{~A} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 . For this parameter, the software interprets a value of 0 as infinity.

Reverse Early voltage, VAR

The reverse Early voltage. The default value is 0 V . The value must be greater than or equal to 0 . For this parameter, the software interprets a value of 0 as infinity.

Resistors Tab

Emitter resistance, RE

The resistance of the emitter. The default value is $1 \mathrm{e}-4 \mathrm{~m}^{2 *} \Omega$. The value must be greater than or equal to 0 .

Collector resistance, RC

The resistance of the collector. The default value is $0.01 \mathrm{~m}^{2 *} \Omega$.
The value must be greater than or equal to 0 .

Zero-bias base resistance, RB

The resistance of the base. The default value is $1 \mathrm{~m}^{2 *} \Omega$. The value must be greater than or equal to 0 .

Minimum base resistance, RBM

The minimum resistance of the base. The default value is $0 \mathrm{~m}^{2 *} \Omega$. The value must be less than or equal to the Zero-bias base resistance, RB parameter value.

Half base resistance cur, IRB

The base current at which the base resistance has dropped to half of its zero-bias value. The default value is Inf $\mathrm{A} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 . Use the default value of Inf if you do not want to model the change in base resistance as a function of base current.

Capacitance Tab

Model junction capacitance

Select one of the following options for modeling the junction capacitance:

- No - Do not include junction capacitance in the model. This is the default option.
- B-E Capacitance - Model the junction capacitance across the base-emitter junction.
- B-C Capacitance - Model the junction capacitance across the base-collector junction.
- C-S Capacitance - Model the junction capacitance across the collector-substrate junction.

Note To include junction capacitance in the model:
1 Select B-E Capacitance and specify the base-emitter junction capacitance parameters.

2 Select B-C Capacitance and specify the base-collector junction capacitance parameters.

3 Select C-S Capacitance and specify the collector-substrate junction capacitance parameters.

You can specify or change any of the common parameters when you select any of the preceding options for the Model junction capacitance parameter.

B-E depletion capacitance, CJE

The depletion capacitance across the base-emitter junction. This parameter is only visible when you select B-E Capacitance for the Model junction capacitance parameter. The default value is $0 \mathrm{~F} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

SPICE PNP

B-E built-in potential, VJE

The base-emitter junction potential. This parameter is only visible when you select B-E Capacitance for the Model junction capacitance parameter. The default value is 0.75 V . The value must be greater than or equal to 0.01 V .

B-E exponential factor, MJE

The grading coefficient for the base-emitter junction. This parameter is only visible when you select B-E Capacitance for the Model junction capacitance parameter. The default value is 0.33 . The value must be greater than or equal to 0 and less than or equal to 0.9.

Forward transit time, TF

The transit time of the minority carriers that cause diffusion capacitance when the base-emitter junction is forward-biased. This parameter is only visible when you select B-E Capacitance for the Model junction capacitance parameter. The default value is 0 . The value must be greater than or equal to 0 .

Coefficient of TF, XTF

The coefficient for the base-emitter and base-collector bias dependence of the transit time, which produces a charge across the base-emitter junction. This parameter is only visible when you select B-E Capacitance for the Model junction capacitance parameter. The default value is 0 . The value must be greater than or equal to 0 . Use the default value of 0 if you do not want to model the effect of base-emitter bias on transit time.

VBC dependence of TF, VTF

The coefficient for the base-emitter bias dependence of the transit time. This parameter is only visible when you select $B-E$ Capacitance for the Model junction capacitance parameter. The default value is 0 V . The value must be greater than or equal to 0 . For this parameter, the software interprets a value of 0 as infinity.

Coefficient of TF, ITF

The coefficient for the dependence of the transit time on collector current. This parameter is only visible when you select $B-E$ Capacitance for the Model junction capacitance parameter. The default value is $0 \mathrm{~A} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 . Use the default value of 0 if you do not want to model the effect of collector current on transit time.

B-C depletion capacitance, CJC

The depletion capacitance across the base-collector junction. This parameter is only visible when you select B-C Capacitance for the Model junction capacitance parameter. The default value is $0 \mathrm{~F} / \mathrm{m}^{2}$. The value must be greater than 0 .

B-C built-in potential, VJC

The base-collector junction potential. This parameter is only visible when you select B-C Capacitance for the Model junction capacitance parameter. The default value is 0.75 V . The value must be greater than or equal to 0.01 V .

B-C exponential factor, MJC

The grading coefficient for the base-collector junction. This parameter is only visible when you select B-C Capacitance for the Model junction capacitance parameter. The default value is 0.33 . The value must be greater than or equal to 0 and less than or equal to 0.9 .

B-C capacitance fraction, XCJC

The fraction of the base-collector depletion capacitance that is connected between the internal base and the internal collector. The rest of the base-collector depletion capacitance is connected between the external base and the internal collector. This parameter is only visible when you select B-C Capacitance for the Model junction capacitance parameter. The default value is 0 . The value must be greater than or equal to 0 and less than or equal to 1 .

SPICE PNP

Reverse transit time, TR

The transit time of the minority carriers that cause diffusion capacitance when the base-collector junction is reverse-biased. This parameter is only visible when you select B-C Capacitance for the Model junction capacitance parameter. The default value is 0 s . The value must be greater than or equal to 0 .
Capacitance coefficient FC
The fitting coefficient that quantifies the decrease of the depletion capacitance with applied voltage. This parameter is only visible when you select B-E Capacitance or B-C Capacitance for the Model junction capacitance parameter. The default value is 0.5 . The value must be greater than or equal to 0 and less than or equal to 0.95 .

Specify initial condition

Select one of the following options for specifying an initial condition:

- No - Do not specify an initial condition for the model. This is the default option.
- Yes - Specify the initial transistor conditions.

Note The PNP block applies the initial transistor voltages across the junction capacitors and not across the ports.

This parameter is only visible when you select B-E Capacitance or B-C Capacitance for the Model junction capacitance parameter.

Initial condition voltage ICVBE

Base-emitter voltage at the start of the simulation. This parameter is only visible when you select B-E Capacitance or B-C Capacitance for the Model junction capacitance and Yes for the Specify initial condition parameter. The default value is 0 V .

SPICE PNP

Initial condition voltage ICVCE

Base-collector voltage at the start of the simulation. This parameter is only visible when you select B-E Capacitance or B-C Capacitance for the Model junction capacitance and Yes for the Specify initial condition parameter. The default value is 0 V .

C-S junction capacitance, CJS

The collector-substrate junction capacitance. This parameter is only visible when you select C-S Capacitance for the Model junction capacitance parameter. The default value is $0 \mathrm{~F} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

Substrate built-in potential, VJS

The potential of the substrate. This parameter is only visible when you select C-S Capacitance for the Model junction capacitance parameter. The default value is 0.75 V .

Substrate exponential factor, MJS

The grading coefficient for the collector-substrate junction. This parameter is only visible when you select C-S Capacitance for the Model junction capacitance parameter. The default value is 0 . The value must be greater than or equal to 0 and less than or equal to 0.9.

Temperature Tab

Model temperature dependence using

Select one of the following options for modeling the transistor temperature dependence:

- Device temperature - Use the device temperature, which is the Circuit temperature value plus the Offset local circuit temperature, TOFFSET value. The Circuit temperature value comes from the SPICE Environment Parameters block, if one exists in the circuit. Otherwise, it comes from the default value for this block.

SPICE PNP

- Fixed temperature - Use a temperature that is independent of the circuit temperature to model temperature dependence.

Beta temperature exponent, XTB

The forward and reverse beta temperature exponent that models base current temperature dependence. This parameter is only visible when you select Device temperature for the Model temperature dependence using parameter. The default value is 0 . The value must be greater than or equal to 0 .

Energy gap, EG

The energy gap that affects the increase in the saturation current as temperature increases. This parameter is only visible when you select Device temperature for the Model temperature dependence using parameter. The default value is 1.11 eV . The value must be greater than or equal to 0.1 .

Temperature exponent for IS, XTI

The order of the exponential increase in the saturation current as temperature increases. This parameter is only visible when you select Device temperature for the Model temperature dependence using parameter. The default value is 3 . The value must be greater than or equal to 0 .

Offset local circuit temperature, TOFFSET
The amount by which the transistor temperature differs from the circuit temperature. This parameter is only visible when you select Device temperature for the Model temperature dependence using parameter. The default value is 0 K .

Parameter extraction temperature, TMEAS

The temperature at which the transistor parameters were measured. The default value is 300.15 K . The value must be greater than 0 .

Fixed circuit temperature, TFIXED

The temperature at which to simulate the transistor. This parameter is only visible when you select Fixed temperature for the Model temperature dependence using parameter. The default value is 300.15 K . The value must be greater than 0 .

SPICE PNP

Ports
The block has the following ports:
B
Electrical conserving port associated with the transistor base terminal.

C
Electrical conserving port associated with the transistor collector terminal.

E
Electrical conserving port associated with the transistor emitter terminal.

S
Electrical conserving port associated with the transistor substrate terminal.

References
[1] G. Massobrio and P. Antognetti. Semiconductor Device Modeling with SPICE. 2nd Edition, McGraw-Hill, 1993. Chapter 2.

See Also Generic Linear Actuator

SPICE Resistor

Purpose Model SPICE-compatible resistor

Library

SPICE-Compatible Components/Passive Devices
Description The SPICE Resistor block represents a SPICE-compatible resistor. You can specify the resistance in one of the following ways:

- As a resistance value
- As process information that the block uses to calculate a resistance value

The block models temperature dependence. There are two ways to specify the resistor temperature:

- When you select Device temperature for the Model temperature dependence using parameter, the resistor temperature is

$$
T=T_{C}+T_{O}
$$

where:

- T_{C} is the Circuit temperature parameter value from the SPICE Environment Parameters block. If this block doesn't exist in the circuit, T_{C} is the default value of this parameter.
- T_{O} is the Offset local circuit temperature, TOFFSET parameter value.
- When you select Fixed temperature for the Model temperature dependence using parameter, the resistor temperature is the Fixed circuit temperature, TFIXED parameter value.

The block adjusts the specified or calculated resistance value for temperature using the following equation:

$$
R=R_{0}\left(1+T C 1\left(T-T_{\text {nom }}\right)+T C 2\left(T-T_{\text {nom }}\right)^{2}\right)
$$

Where

SPICE Resistor

- R_{0} is the specified or calculated resistance value.
- TC1 is the First order temperature coefficient, TC1 parameter value.
- $T C 2$ is the Second order temperature coefficient, TC2 parameter value.
- $T_{\text {nom }}$ is the Parameter extraction temperature, TMEAS parameter value.

Dialog Box and Parameters

Resistance Tab

Device scale factor, SCALE

The number of parallel resistors that the block represents. This value multiplies the output current. The default value is 1 .

Resistor parameterization

Select one of the following options for specifying the resistor value:

SPICE Resistor

- Use specified resistance - Provide the resistance value directly. This option is the default.
- Calculate from process information - Provide process parameters that the block uses to calculate the resistance value.

When you select this option, the block calculates the resistance using the following equation:

$$
R=R S H * \frac{(\text { LENGTH }- \text { NARROW })}{(\text { WIDTH }- \text { NARROW })}
$$

where:

- RSH is the Sheet resistance, $\mathbf{R S H}$ parameter value.
- LENGTH is the Resistor length, LENGTH parameter value.
- WIDTH is the Resistor width, WIDTH parameter value.
- NARROW is the Etch narrowing, NARROW parameter value.

Resistance, R

Resistance value. This parameter is only visible when you select Use specified resistance for the Resistor parameterization parameter. The default value is 0Ω.

Sheet resistance, RSH

Resistance per square of the resistor. This parameter is only visible when you select Calculate from process information for the Resistor parameterization parameter. The default value is 0Ω.

Resistor length, LENGTH

Length dimension of the resistor. This parameter is only visible when you select Calculate from process information for the Resistor parameterization parameter. The default value is 1e-06m.

SPICE Resistor

Resistor width, WIDTH

Width dimension of the resistor. This parameter is only visible when you select Calculate from process information for the Resistor parameterization parameter. The default value is $1 \mathrm{e}-06 \mathrm{~m}$.

Etch narrowing, NARROW

Amount by which the resistor length and width are reduced due to side etching. This parameter is only visible when you select Calculate from process information for the Resistor parameterization parameter. The default value is 0 m .

Temperature Tab

First order temperature coefficient, TC1

Coefficient for the linear term in the equation that the block uses to adjust the specified or calculated resistance value for temperature. The default value is $01 / \mathrm{K}$.

SPICE Resistor

Second order temperature coefficient, TC2

Coefficient for the quadratic term in the equation the block uses to adjust the specified or calculated resistance value for temperature. The default value is $01 / \mathrm{K}^{2}$.

Model temperature dependence using

Select one of the following options for modeling the resistor temperature dependence:

- Device temperature - Use the device temperature, which is the Circuit temperature parameter value (from the SPICE Environment Parameters block, if one exists in the circuit, or the default value for this block otherwise) plus the Offset local circuit temperature, TOFFSET parameter value.
- Fixed temperature - Use a temperature that is independent of the circuit temperature to model temperature dependence.

Offset local circuit temperature, TOFFSET

The amount by which the resistor temperature differs from the circuit temperature. This parameter is only visible when you select Device temperature for the Model temperature dependence using parameter. The default value is 0 K .

Parameter extraction temperature, TMEAS

The temperature at which the resistor parameters were measured. The default value is 300.15 K . The value must be greater than 0 .

Fixed circuit temperature, TFIXED

The temperature at which to simulate the resistor. This parameter is only visible when you select Fixed temperature for the Model temperature dependence using parameter. The default value is 300.15 K . The value must be greater than 0 .

Ports The block has the following ports:
 $+$
 Positive electrical voltage.

SPICE Resistor

Negative electrical voltage.

See Also
 Diode

Purpose

Model stepper motor

Library

Description

Rotational Actuators following equations:

The Stepper Motor block represents a stepper motor. It uses the input pulse trains, A and B, to control the mechanical output according to the

$$
\begin{aligned}
& \frac{d i_{A}}{d t}=\left(v_{A}-R i_{A}+K_{m} \omega \sin \left(N_{r} \theta\right)\right) / L \\
& \frac{d i_{B}}{d t}=\left(v_{B}-R i_{B}-K_{m} \omega \cos \left(N_{r} \theta\right)\right) / L \\
& \frac{d \omega}{d t}=\left(-K_{m} i_{a} \sin \left(N_{r} \theta\right)+K_{m} i_{b} \cos \left(N_{r} \theta\right)-B \omega\right) / J \\
& \frac{d \theta}{d t}=\omega
\end{aligned}
$$

where:

- i_{A} and i_{B} are the A and B phase winding currents.
- v_{A} and v_{B} are the A and B phase winding voltages.
- K_{m} is the motor torque constant.
- N_{r} is the number of teeth on each of the two rotor poles. The Full step size parameter is ($\Pi / 2) / N_{r}$.
- R is the winding resistance.
- L is the winding inductance.
- B is the rotational damping.
- J is the inertia.

Stepper Motor

If the initial rotor is zero or some multiple of ($\Pi / 2$)/ N_{r}, the rotor is aligned with the phase winding of pulse A. This happens when there is a positive current flowing from the $\mathrm{A}+$ to the A - ports and there is no current flowing from the $\mathrm{B}+$ to the $\mathrm{B}-$ ports.

Use the Stepper Motor Driver block to create the pulse trains for the Stepper Motor block.

The Stepper Motor block produces a positive torque acting from the mechanical C to R ports when the phase of pulse A leads the phase of pulse B.

Basic Assumptions and Limitations

The model is based on the following assumptions:

- This model neglects magnetic saturation effects, detent torque, and any magnetic coupling between phases.
- When you select the Start simulation from steady state check box in the Simscape Solver Configuration block, this block will not initialize an Initial rotor angle value between $-\Pi$ and $п$.

Stepper Motor

Dialog Box and Parameters

Electrical Torque Tab

Phase winding resistance

Resistance of the A and B phase windings. The default value is 0.55Ω.

Phase winding inductance

Inductance of the A and B phase windings. The default value is 0.0015 H .

Motor torque constant

Motor torque constant K_{m}. The default value is $0.19 \mathrm{~N} * \mathrm{~m} / \mathrm{A}$.

Full step size

Step size when changing the polarity of either the A or B phase current. The default value is 1.8°.

Stepper Motor

Mechanical Tab

Rotor inertia

Resistance of the rotor to change in motor motion. The default value is $4.5 \mathrm{e}-05 \mathrm{~kg} \mathrm{~m}^{2}$. The value can be zero.

Rotor damping

Energy dissipated by the rotor. The default value is $8 \mathrm{e}-04$ $\mathrm{N}^{*} \mathrm{~m} /(\mathrm{rad} / \mathrm{s})$. The value can be zero.

Initial rotor speed

Speed of the rotor at the start of the simulation. The default value is 0 rpm .

Initial rotor angle

Angle of the rotor at the start of the simulation. The default value is 0 rad .

Ports

The block has the following ports:
A+Positive electrical output of pulse A.
A-Negative electrical output of pulse AB+Positive electrical output of pulse B.B-Negative electrical output of pulse B.CMechanical rotational conserving port.
RMechanical rotational conserving port.
Examples See the Controlled Stepper Motor demo.
References [1] M. Bodson, J. N. Chiasson, R. T. Novotnak and R. B. Rekowski. "High-Performance Nonlinear Feedback Control of a Permanent Magnet Stepper Motor." IEEE Transactions on Control Systems Technology, Vol. 1, No. 1, March 1993.[2] P. P. Acarnley. Stepping Motors: A Guide to Modern Theory andPractice. New York: Peregrinus, 1982.[3] S.E. Lyshevski. Electromechanical Systems, Electric Machines, andApplied Mechatronics. CRC, 1999.
See Also Stepper Motor Driver

Stepper Motor Driver

Purpose	Model stepper motor driver
Library	Drivers

Description The Stepper Motor Driver block represents a stepper motor driver. It
 creates the pulse trains, A and B, required to control the motor. This block initiates a step each time the voltage at the PWM port rises above the Enable threshold voltage.

If the voltage at the REV port is less than or equal to the Reverse threshold voltage, pulse A leads pulse B by 90 degrees. If the voltage at the REV port is greater than the Reverse threshold voltage, pulse B leads pulse A by 90 degrees and the motor direction is reversed.

At time zero, pulse A is positive and pulse B is negative.
Use the Controlled PWM Voltage block to create the voltage at the PWM port. This block creates a network engine event every time the PWM signal goes high. The network engine event triggers a simulation time point when the PWM signal goes high, which ensures good simulation accuracy. If you instead use the Controlled Voltage Source block from the Foundation library, you need to set a suitably small time step for the simulation. For information about specifying the Simulink step size, see "Choosing a Solver" in the Simulink User's Guide.

Stepper Motor Driver

Dialog Box and Parameters

Enable threshold voltage

When the voltage at the PWM port rises above this threshold, the Stepper Motor Driver block initiates a step. The default value is 2.5 V .

Reverse threshold voltage

When the voltage at the REV port rises above this threshold, pulse B leads pulse A by 90 degrees and the motor direction is reversed. The default value is 2.5 V .

Output voltage amplitude

Amplitude of the output pulse trains. The default value is 10 V .

Ports

The block has the following ports:

A+
Positive electrical output of pulse A.

Stepper Motor Driver

A-Negative electrical output of pulse A
B+Positive electrical output of pulse B.B-Negative electrical output of pulse B.
PWMTriggering input step voltage.
REFInput floating reference voltage.REVInput voltage that controls motor direction.
Examples See the Controlled Stepper Motor demo.
See Also Controlled PWM Voltage and Stepper Motor.

Strain Gauge

Purpose

Library

Description

Model deformation sensor

Sensors

The Strain Gauge block represents a sensor that generates a change in resistance as a function of strain using the following equation:
$\frac{\Delta R}{R}=K \varepsilon$
where:

- $\Delta R / R$ is the fractional change in resistance.
- ε is the strain at port B.
- K is the Gauge factor parameter value.

Gauge resistance

The unstressed gauge resistance. The default value is 100Ω.

Strain Gauge

Gauge factor

The ratio K of the fractional change in resistance to the fractional change in length. The default value is 2 .

Ports The block has the following ports:

B
Strain input.
$+$
Positive electrical port.

Negative electrical port.

Purpose

Model timer integrated circuit behaviorally

Library

Description

Integrated Circuits
The Timer block is a behavioral model of a timer integrated circuit such as the NE555.

The following figure shows the implementation structure.

The Potential divider component resistance parameter sets the values of the three resistors creating the potential divider. The two comparator inputs have infinite input resistance and zero input capacitance. The S-R Latch block provides the functionality of the set-reset latch. It includes an output capacitor and a resistor with values set to match the Propagation delay parameter value. The block models the output stage inverter using a SimElectronics CMOS NOT block. You define the output resistance, low-level output voltage, and high-level output voltage for the CMOS gate in the Timer block dialog box. The discharge switch approximates the NPN bipolar transistor on a real timer as a switch with defined switch on-resistance and off-resistance values.

Basic
 Assumptions and Limitations

This block has the following limitations:

- The behavior is abstracted. Results are not as accurate as a transistor-level model.
- Delay in response to changing inputs depends solely upon the RC time constant of the resistor-capacitor network at the output of the latch. In practice, the delay has a more complex dependency on the device structure. Set this value based on the output-pulse rise and fall times.
- The drop in output voltage is a linear function of output current. In practice, the relationship is that of a bipolar transistor push-pull pair.
- The controlled switch arrangement used by the block is an approximation of an open-collector arrangement.
- The power supply connects internally within the component, and the block assumes that the GND pin is grounded.

Supply Tab

Power supply voltage

The voltage value $V_{c c}$ that the block applies internally to the timer component. The default value is 15 V .

Outputs Tab

Low level output voltage

The output voltage when the timer output is low and no output current is drawn. The default value is 0 V .

High level output voltage

The output voltage $V_{O H}$ when the timer output is high and no current is drawn. The default value is 14.1 V .

Output resistance

The ratio of output voltage drop to output current. Set this parameter to $\left(V_{O H}-V_{O H 1}\right) / I_{O H 1}$, where $V_{O H 1}$ is the reduced output high voltage when the output current is $I_{O H 1}$. The default value is 8Ω.

Propagation delay

Set this value to the input-pulse or output-pulse rise time. The default value is $1 \mathrm{e}-07 \mathrm{~s}$.

Discharge Tab

Discharge switch on-resistance

A representative value is the discharge pin saturation voltage divided by the corresponding current. The default value is 12Ω.

Discharge switch off-resistance

A representative value is the discharge pin leakage current divided by the corresponding pin voltage. The default value is $5 \mathrm{e}+08 \Omega$.

Potential Divider Tab

Potential divider component resistance

A typical value for a 555 -type timer is $5 \mathrm{k} \Omega$. You can measure it directly across the positive supply and control pins when the chip does not connect to a circuit. The default value is $5 \mathrm{k} \Omega$.

Ports

This block has the following ports:
THRES
Electrical port corresponding to the threshold pin.
TRIG
Electrical port corresponding to the trigger pin.
CONT
Electrical port corresponding to the control pin.

RESET

Electrical port corresponding to the reset pin.
OUT
Electrical port corresponding to the output pin.

DISCH

Electrical port corresponding to the discharge pin.

See Also
 S-R Latch and Comparator.

Purpose

Model resistor with thermal port

Library

Description

Passive Devices T is

The Thermal Resistor block represents a temperature-dependent resistor. The resistance when the temperature at the thermal port is

$$
R=R_{0}\left(1+\alpha\left(T-T_{0}\right)\right)
$$

where:

- R_{0} is the nominal resistance at the reference temperature T_{0}.
- a is the temperature coefficient.

The following equation describes the thermal behavior of the block:

$$
Q=K_{d} t_{c} \frac{d T}{d t}
$$

where:

- Q is the net heat flow into port A.
- K_{d} is the Dissipation factor parameter value.
- t_{c} is the Thermal time constant parameter value.
- $d T / d t$ is the rate of change of the temperature.

Dialog
 Electrical Tab

Box and Parameters

Nominal resistance

The nominal resistance of the thermistor at the reference temperature. Many datasheets quote the nominal resistance at $25^{\circ} \mathrm{C}$ and list it as R 25 . The default value is 1Ω.

Reference temperature

The temperature at which the nominal resistance was measured. The default value is $25^{\circ} \mathrm{C}$.

Temperature coefficient

The coefficient a in the equation that describes resistance as a
function of temperature. The default value is $5 \mathrm{e}-051 / \mathrm{K}$.

Thermal Tab

Thermal time constant

The time it takes the resistor temperature to reach 63% of the final temperature change when a step change in ambient temperature occurs. The default value is 10 s .

Dissipation factor

The thermal power required to raise the thermal resistor temperature by one K . The default value is $0.001 \mathrm{~W} / \mathrm{K}$.

Initial temperature

The temperature of the thermal resistor at the start of the simulation. The default value is $25^{\circ} \mathrm{C}$.

The block has the following ports:

Thermal Resistor

A
Resistor thermal port.
$+$
Positive electrical port.

Negative electrical port.
See Also Thermistor, Thermocouple.

Purpose

Model NTC thermistor using B-parameter equation

Library

Sensors
Description

The Thermistor block represents an NTC thermistor using the B-parameter equation. The resistance at temperature T is

$$
R=R_{0}\left(e^{B\left(1 / T-1 / T_{0}\right)}-1\right)
$$

where:

- R_{0} is the nominal resistance at the reference temperature T_{0}.
- B is the characteristic temperature constant.

The following equation describes the thermal behavior of the block:

$$
Q=K_{d} t_{c} \frac{d T}{d t}
$$

where:

- Q is the net heat flow into port A.
- K_{d} is the Dissipation factor $\mathbf{K}_{-} \mathbf{d}$ parameter value.
- t_{c} is the Thermal time constant $\mathbf{t} \mathbf{c}$ c parameter value.
- $d T / d t$ is the rate of change of the temperature.

To model the thermistor in free space:
1 Connect the thermistor to the B port of a Simscape Convective Heat Transfer block.

2 Connect the A port of the Convective Heat Transfer block to a Simscape Ideal Temperature Source block whose temperature is set to the ambient temperature.

3 Set the Area parameter of the Convective Heat Transfer block to an approximate area $A_{n o m}$.

4 Set the Heat transfer coefficient parameter of the Convective Heat Transfer block to $K_{d} / A_{\text {nom }}$.

Dialog Box and Parameters

Electrical Tab

Nominal resistance R 0 at reference temperature T0
The nominal resistance of the thermistor at the reference temperature. Many datasheets quote the nominal resistance at $25^{\circ} \mathrm{C}$ and list it as R25. The default value is 1000Ω.

Reference temperature T0

The temperature at which the nominal resistance was measured. The default value is $25^{\circ} \mathrm{C}$.

Characteristic temperature constant B

The coefficient B in the equation that describes resistance as a function of temperature. The default value is $3.5 \mathrm{e}+03 \mathrm{~K}$.

Thermal Tab

Thermal time constant

The time it takes the sensor temperature to reach 63% of the final temperature change when a step change in ambient temperature occurs. The default value is 5 s .

Thermistor

Dissipation factor

The thermal power required to raise the thermistor temperature by one K . The default value is $7.5 \mathrm{e}-04 \mathrm{~W} / \mathrm{K}$.

Initial temperature

The temperature of the thermistor at the start of the simulation. The default value is $25^{\circ} \mathrm{C}$.

Ports

The block has the following ports:
A
Thermal port.
$+$
Positive electrical port.

Negative electrical port.

Thermal Resistor

Purpose

Library

Description

Model sensor that converts thermal potential difference into electrical potential difference

Sensors

The Thermocouple block represents a thermocouple using the standard polynomial parameterization defined in the NIST ITS-90 Thermocouple Database [1]. The voltage E across the device in mV is

$$
E(m V)=c 0+c 1^{*} t+\ldots+c n^{*} t^{n}
$$

where:

- $c i$ is the $i^{\text {th }}$ element of the Coefficients [c0 c1 ... cn] parameter value.
- t is the temperature difference in degrees Celsius between the temperature at the thermal port A and the Reference temperature parameter value.

Note The equation for voltage across the device as a function of temperature difference is defined in mV . The units of the voltage across the actual device is V .

The following equation describes the thermal behavior of the block:

$$
Q=K_{d} t_{c} \frac{d T}{d t}
$$

where:

- T is the temperature at port A.
- Q is the net heat flow into port A.
- K_{d} is the Dissipation factor parameter value.
- t_{c} is the Thermal time constant parameter value.
- $d T / d t$ is the rate of change of the temperature.

To model the thermocouple in free space:
1 Connect the thermocouple to the B port of a Simscape Convective Heat Transfer block.

2 Connect the A port of the Convective Heat Transfer block to a Simscape Ideal Temperature Source block whose temperature is set to the ambient temperature.

3 Set the Area parameter of the Convective Heat Transfer block to an approximate area $A_{\text {nom }}$.

4 Set the Heat transfer coefficient parameter of the Convective Heat Transfer block to $K_{d} / A_{\text {nom }}$.

Basic Assumptions and Limitations

The model is based on the following assumptions:

- The high-order polynomials this block uses are very sensitive to the number of significant figures used for computation. Use all available significant figures when specifying the Coefficients [c0 c1 ... cn] parameter.
- Coefficients [c0 c1 ... cn] are defined for use over a specified temperature range.
- This block does not include the additional exponential term that Type K thermocouples use when parameterized for $t>0$.

Dialog Box and Parameters

Electrical Tab

Note You can download parameters for other standard thermocouple types from the NIST database [1]. For a demo of how to do this, see the Simulink Approximating Nonlinear Relationships: Type S Thermocouple demo, sldemo_tc_script.m, and the associated model file, sldemo_tc.mdl.

Thermal Tab

Reference temperature

The temperature the block subtracts from the temperature at the thermal port in calculating the voltage across the device. The default value is $0^{\circ} \mathrm{C}$.

Thermal time constant

The time it takes the thermocouple temperature to reach 63% of the final temperature change when a step change in ambient temperature occurs. The default value is 1 s .

Dissipation factor

The thermal power required to raise the thermocouple temperature by one K . The default value is $0.001 \mathrm{~W} / \mathrm{K}$.

Initial temperature

The temperature of the thermocouple at the start of the simulation. The default value is $25^{\circ} \mathrm{C}$.
Ports The block has the following ports:
AThermocouple thermal port.$+$Positive electrical port.
Negative electrical port.
References [1] NIST ITS-90 Thermocouple Database http://srdata.nist.gov/its90/main
See Also Thermal Resistor.

Purpose
Library
Description

Model three coupled inductors
Passive Devices
The Three-Winding Mutual Inductor block represents a set of three coupled inductors or windings. The voltage across the three windings is

$$
\begin{aligned}
& V_{1}=L_{1} \frac{d I_{1}}{d t}+M_{12} \frac{d I_{2}}{d t}+M_{13} \frac{d I_{3}}{d t} \\
& V_{2}=M_{12} \frac{d I_{1}}{d t}+L_{2} \frac{d I_{2}}{d t}+M_{23} \frac{d I_{3}}{d t} \\
& V_{3}=M_{13} \frac{d I_{1}}{d t}+M_{23} \frac{d I_{2}}{d t}+L_{3} \frac{d I_{3}}{d t}
\end{aligned}
$$

where:

- V_{i} is voltage across the i th winding.
- I_{i} is current through the i th winding.
- L_{i} is self inductance of the i th winding.
- $M_{i j}$ is mutual inductance of the i th and j th windings, $M_{i j}=K_{i j} \sqrt{L_{i} L_{j}}$.

In the preceding equations, currents are positive when flowing into the positive node of their respective inductor terminals.

When you run a simulation that includes this block, the software checks the specified parameter values to ensure that the resulting device is passive. If it is not, the software issues an error.

Three-Winding Mutual Inductor

Dialog
 Box and Parameters

> Biock Parameters: Three-Winding Mutual Inductor Three-Winding Mutual Inductor This block models three coupled inductors. The following equ voltage-current relationships, where currents are positive wl positive node of their respective inductor terminals. $\mathrm{V} 1=\mathrm{L} 1^{*} \mathrm{dI} 1 / \mathrm{dt}+\mathrm{M} 12^{*} \mathrm{dI} 2 / \mathrm{dt}+\mathrm{M} 13^{*} \mathrm{dI} 3 / \mathrm{dt}$ $\mathrm{V} 2=\mathrm{M} 12^{*} \mathrm{dI} 1 / \mathrm{dt}+\mathrm{L} 2^{*} \mathrm{dI} 2 / \mathrm{dt}+\mathrm{M} 23^{*} \mathrm{dI} 3 / \mathrm{dt}$ $\mathrm{V} 3=\mathrm{M} 13^{*} \mathrm{dI} 1 / \mathrm{dt}+\mathrm{M} 23^{*} \mathrm{dI} 2 / \mathrm{dt}+\mathrm{L} 3^{*} \mathrm{dI} 3 / \mathrm{dt}$
x

This block models three coupled inductors. The following equations decsribe the voltage-current relationships, where currents are positive when flowing into the
where parameters L1, L2 and L3 are the winding self-inductances, and the Mi, js are the mutual inductances. Mi, j is defined in terms of the Coefficient of Coupling K, j using the equation Mi, $=\mathrm{Ki}, \mathrm{j}^{*}$ sqrt($(\mathrm{Li}$ * L$)$. The absolute value of $|\mathrm{K}|$ must be less than one and the eignevalues of above system of equations must be greater than zero.

The parameters IC1, IC2 and IC3 set the initial currents flowing through windings 1,2 and 3.

Inductance L1

The self inductance of the first winding. The default value is 0.001 H .

Inductance L2

The self inductance of the second winding. The default value is 0.001 H .

Inductance L3

The self inductance of the third winding. The default value is 0.001 H.

Coefficient of coupling, K12

The coefficient that defines the mutual inductance between the first and second windings. The default value is 0.9. The absolute value must be between 0 and 1 , exclusive.

Coefficient of coupling, K13

The coefficient that defines the mutual inductance between the first and third windings. The default value is 0.9 . The absolute value must be between 0 and 1 , exclusive.

Coefficient of coupling, K23

The coefficient that defines the mutual inductance between the second and third windings. The default value is 0.9 . The absolute value must be between 0 and 1 , exclusive.

Specify initial condition

Select one of the following options for specifying an initial condition:

- No - Do not specify an initial condition for the model. This is the default option.
- Yes - Specify the initial inductor currents.

Initial current port 1, IC1
The current flowing through the first winding at the start of the simulation. This parameter is only visible when you select Yes for the Specify initial condition parameter. The default value is 0 A .

Initial current port 2, IC2

The current flowing through the second winding at the start of the simulation. This parameter is only visible when you select

Yes for the Specify initial condition parameter. The default value is 0 A .

Initial current port 3, IC3

The current flowing through the third winding at the start of the simulation. This parameter is only visible when you select Yes for the Specify initial condition parameter. The default value is 0 A .

Ports The block has the following ports:

1+

Positive electrical voltage of the first mutual inductor.
1 -
Negative electrical voltage of the first mutual inductor.
2+
Positive electrical voltage of the second mutual inductor.
2-
Negative electrical voltage of the second mutual inductor.
3+
Positive electrical voltage of the third mutual inductor.
$3-$
Negative electrical voltage of the third mutual inductor.

Purpose

Library
Description号年首

Model electrical and torque characteristics of a universal（or series） motor

Rotational Actuators
The Universal Motor block represents the electrical and torque characteristics of a universal（or series）motor using the following equivalent circuit model．

Where：
－R_{a} is the armature resistance．
－L_{a} is the armature inductance．
－R_{f} is the field winding resistance．
－L_{f} is the field winding inductance．
When you set the Model parameterization parameter to By equivalent circuit parameters，you specify the equivalent circuit parameters for this model．The Universal Motor block computes the motor torque as follows：

1 The magnetic field in the motor induces the following back emf v_{b} in the armature:

$$
v_{b}=L_{a f} i_{f} \omega
$$

where $L_{a f}$ is a constant of proportionality and ω is the angular velocity.

2 The mechanical power is equal to the power reacted by the back emf:

$$
P=v_{b} i_{f}=L_{a f} i_{f}{ }^{2} \omega
$$

3 The motor torque is:

$$
T=P / \omega=L_{a f} i_{f}{ }^{2}
$$

The torque-speed characteristic for the Shunt Motor block model is related to the parameters in the preceding figure. When you set the Model parameterization parameter to By DC rated power, rated speed \& maximum torque or By DC rated power, rated speed \& electrical power, the block solves for the equivalent circuit parameters as follows:

1 For the steady-state torque-speed relationship when using a DC supply, L has no effect.

2 Sum the voltages around the loop:

$$
V=\left(R_{f}+R_{a}\right) i_{f}+v_{b}=\left(R_{f}+R_{a}+L_{a f} \omega\right) i_{f}
$$

3 Solve the preceding equation for i_{f} and substitute this value into the equation for torque:

$$
T=L_{a f}\left(\frac{V}{R_{f}+R_{a}+L_{a f} \omega}\right)^{2}
$$

The block uses the rated speed and power to calculate the rated torque. The block uses the rated torque and rated speed values in the preceding equation plus the corresponding electrical power to determine values for $R_{f}+R_{a}$ and $L_{a f}$.

When you set the Model parameterization parameter to By AC rated power, rated speed, current \& electrical power, then the block must include the inductive terms L_{a} and L_{f} in the model. This requires information about the RMS rated current and voltage for the total inductance.

The block models motor inertia J and damping B for all values of the Model parameterization parameter. The output torque is:

$$
T_{\text {load }}=L_{a f}\left(\frac{V}{R_{f}+R_{a}+L_{a f} \omega}\right)^{2}-J \dot{\omega}-B \omega
$$

The block produces a positive torque acting from the mechanical C to R ports.

Universal Motor

Dialog
 Box and Parameters

Electrical Torque Tab

Abstract

Block Parameters: Universal Motor Universal Motor This block represents the electrical and torque characteristics of a universal motor (also sometimes called a serieswound motor).

Motor characteristics can be defined in terms of equivalent circuit parameters R (total armature and field winding resistance), L (total armature and field winding inductance) and Laf (back-emf constant). The back emf induced in the armature is given by $\mathrm{Vb}=$ Laf $* \mathrm{I} * \mathrm{~W}$ where I is the motor current and W is the mechanical angular speed. Alternatively, the motor characteristics can be defined in terms of rated mechanical power \& speed, stall torque or electrical power, nominal DC voltage, and L . If no information is available on armature or field winding inductance, L can be set to a suitably small non-zero value when driving the motor with $D C$.

The block produces a positive torque acting from the mechanical C to R ports.

Model parameterization

Select one of the following methods for block parameterization:

- By equivalent circuit parameters - Provide electrical parameters for an equivalent circuit model of the motor.

Universal Motor

- By DC rated power, rated speed \& maximum torque Provide DC power and speed parameters that the block converts to an equivalent circuit model of the motor. This is the default method.
- By DC rated power, rated speed \& electrical power - Provide AC power and speed parameters that the block converts to an equivalent circuit model of the motor.
- By AC rated power, rated speed, current \& electrical power - Provide AC power and speed parameters that the block converts to an equivalent circuit model of the motor.

Total armature and field winding resistance

Total resistance of the armature and field winding. This parameter is only visible when you select By equivalent circuit parameters for the Model parameterization parameter. The default value is 132.8Ω.

Rated speed (at rated load)

Motor speed at the rated mechanical load. This parameter is only visible when you select By DC rated power, rated speed \& maximum torque, By DC rated power, rated speed \& electrical power, or By AC rated power, rated speed, current \& electrical power for the Model parameterization parameter. The default value is $6.5 \mathrm{e}+03 \mathrm{rpm}$.

Rated load (mechanical power)

The mechanical load for which the motor is rated to operate. This parameter is only visible when you select By DC rated power, rated speed \& maximum torque, By DC rated power, rated speed \& electrical power, or By AC rated power, rated speed, current \& electrical power for the Model parameterization parameter. The default value is 75 W .

Rated DC supply voltage

The DC voltage at which the motor is rated to operate. This parameter is only visible when you select By DC rated power, rated speed \& maximum torque or By DC rated power, rated
speed \& electrical power for the Model parameterization parameter. The default value is 200 V .

Electrical power in at rated load

The amount of electrical power the motor uses at the rated mechanical power. This parameter is only visible when you select By DC rated power, rated speed \& electrical power or By AC rated power, rated speed, current \& electrical power for the Model parameterization parameter. The default value is 160 W .

Maximum (starting) torque
Maximum torque the motor produces. This parameter is only visible when you select By DC rated power, rated speed \& maximum torque for the Model parameterization parameter. The default value is $0.39 \mathrm{~N} * \mathrm{~m}$.

Total armature and field winding inductance
Total inductance of the armature and field winding. If you do not have information about this inductance, set the value of this parameter to a small, nonzero number. This parameter is only visible when you select By equivalent circuit parameters, By DC rated power, rated speed \& maximum torque, or By DC rated power, rated speed \& electrical power for the Model parameterization parameter. The default value is 0.525 H .

Note You can set the Total armature and field winding inductance value to zero, but this only makes sense if you are driving the motor with a DC source.

RMS rated voltage

RMS supply voltage when the motor operates on AC power. This parameter is only visible when you select By AC rated power, rated speed, current \& electrical power for the Model parameterization parameter. The default value is 240 V .

Universal Motor

RMS current at rated load

RMS current when the motor operates on AC power at the rated load. This parameter is only visible when you select By AC rated power, rated speed, current \& electrical power for the Model parameterization parameter. The default value is 0.8 A .

AC frequency

Frequency of the AC supply voltage. This parameter is only visible when you select By AC rated power, rated speed, current \& electrical power for the Model parameterization parameter. The default value is 50 Hz .

Universal Motor

Mechanical Tab

Block Parameters: Universal Motor
Universal Motor
This block represents the electrical and torque characteristics of a universal motor (also sometimes called a serieswound motor).

Motor characteristics can be defined in terms of equivalent circuit parameters R (total armature and field winding resistance), L (total armature and field winding inductance) and Laf (back-emf constant). The back emf induced in the armature is given by $\mathrm{Vb}=\mathrm{Laf} * \mathrm{I}$ * W where I is the motor current and W is the mechanical angular speed. Alternatively, the motor characteristics can be defined in terms of rated mechanical power \& speed, stall torque or electrical power, nominal $D C$ voltage, and L . If no information is available on armature or field winding inductance, L can be set to a suitably small non-zero value when driving the motor with $D C$.

The block produces a positive torque acting from the mechanical C to R ports.

Rotor inertia

Rotor inertia. The default value is $2 \mathrm{e}-04 \mathrm{~kg}^{*} \mathrm{~m}^{2}$. The value can be zero.

Universal Motor

Rotor dampingRotor damping. The default value is $1 \mathrm{e}-06 \mathrm{~N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})$. Thevalue can be zero.
Initial rotor speedSpeed of the rotor at the start of the simulation. The defaultvalue is 0 rpm .
Ports The block has the following ports:
$+$Positive electrical port.
Negative electrical port.Mechanical rotational conserving port.
R
Mechanical rotational conserving port.
References [1] Bolton, W. Mechatronics: Electronic Control Systems in Mechanical and Electrical Engineering 3rd edition, Pearson Education, 2004.
See Also DC Motor, Induction Motor, Servomotor, and Shunt Motor.

Variable Capacitor

Purpose

Model linear time-varying capacitor

Library

Description
Passive Devices

The Variable Capacitor block represents a linear time-varying capacitor. The block provides two options for the relationship between the current i through the capacitor and the voltage v across the device when the capacitance at port C is C. The Equation parameter determines which of the following equations the block uses:

- $i=\frac{d C}{d t} v+C \frac{d v}{d t}$

Use the preceding equation when the capacitance is defined as the ratio of the charge Q to the steady-state voltage:

$$
C(v)=\frac{Q(v)}{v}
$$

- $i=C \frac{d v}{d t}$

Use the preceding equation when the capacitance is defined as the local gradient of the charge-voltage curve for a given voltage:

$$
C(v)=\frac{d Q(v)}{d v}
$$

The block includes a resistor in series with the variable capacitor. You can use this resistor to represent the total ohmic connection resistance of the capacitor. You may need to use this resistor to prevent numerical issues for some circuit topologies, such as where a Variable Capacitor block is connected in parallel with another capacitor block that does not have a series resistance.

Variable Capacitor

Dialog Box and Parameters

Equation

Select one of the following options for block capacitance:

- $I=C * d V / d t+d C / d t * V-$ This equation assumes the capacitance is defined as the ratio of the charge to the steady-state voltage. This option is the default.
- I = C*dV/dt - This equation assumes the capacitance is defined as the local gradient of the charge-voltage curve for a given voltage.

Minimum capacitance $\mathbf{C}>0$

The lower limit on the value of the signal at port C. This limit prevents the signal from reaching a value that has no physical meaning. The default value is $1 \mathrm{e}-09 \mathrm{~F}$.

Series resistance

The value of the resistance placed in series with the variable capacitor. The default value is $1 \mathrm{e}-06 \Omega$.

Initial charge

The charge at the start of the simulation. This parameter is only visible when you select $I=C * d V / d t+d C / d t * V$ for the Equation parameter. The default value is 0 c.

Initial voltage

The output voltage at the start of the simulation. This parameter is only visible when you select $I=C * d V / d t$ for the Equation parameter. The default value is 0 V .

Ports The block has the following ports:

C
Capacitance. C must be finite and greater than zero.
$+$
Positive electrical port.

Negative electrical port.
See Also Variable Inductor, Simscape Variable Resistor

Variable Inductor

Purpose Model linear time-varying inductor
Library
Passive Devices
Description The Variable Inductor block represents a linear time-varying inductor. C+MC: The block provides two options for the relationship between the voltage v across the device and the current through the inductor i when the inductance at port L is L. The Equation parameter determines which of the following equations the block uses:

- $v=\frac{d L}{d t} i+L \frac{d i}{d t}$

Use the preceding equation when the inductance is defined as the ratio of the magnetic flux Φ to the steady-state current:

$$
L(i)=\frac{\Phi(i)}{i}
$$

- $v=L \frac{d i}{d t}$

Use the preceding equation when the inductance is defined as the local gradient of the flux-current curve for a given current:

$$
L(i)=\frac{d \Phi(i)}{d i}
$$

The block includes a conductance in parallel with the variable inductor. You can use the conductor to represent the total insulation conductance of the inductor. You may need to use the conductor to prevent numerical issues for some circuit topologies, such as where a Variable Inductor block is connected in series with another inductor block that does not have a parallel conductance.

Variable Inductor

Dialog Box and Parameters

Equation

Select one of the following options for block inductance:

- $V=L * d I / d t+d L / d t * I-$ This equation assumes the inductance is defined as the ratio of the magnetic flux to the steady-state current. This option is the default.
- $\mathrm{V}=\mathrm{L} * \mathrm{dI} / \mathrm{dt}$ - This equation assumes the inductance is defined as the local gradient of the flux-current curve for a given current.

Minimum inductance $L>0$

The lower limit on the value of the signal at port L . This limit prevents the signal from reaching a value that has no physical meaning. The default value is $1 \mathrm{e}-06 \mathrm{H}$.

Parallel conductance

The value of the conductance placed in parallel with the variable inductor. The default value is $1 \mathrm{e}-091 / \Omega$.

Initial magnetic flux

The magnetic flux at the start of the simulation. This parameter is only visible when you select V = L*dI/dt + dL/dt*I for the Equation parameter. The default value is 0 Wb .

Variable Inductor

Initial current

The output current at the start of the simulation. This parameter is only visible when you select V $=\mathrm{L} * \mathrm{dI} / \mathrm{dt}$ for the Equation parameter. The default value is 0 A .

Ports The block has the following ports:
L
Inductance. L must be finite and greater than zero.
$+$
Positive electrical port.

Negative electrical port.

See Also Variable Capacitor, Simscape Variable Resistor

Purpose

Model voltage-controlled switch with hysteresis

Library

Description

Basic
Assumptions and Limitations

The block output resistance model is discontinuous during switching. The discontinuity might cause numerical issues. Try the following actions to resolve the issues:

- Set the On resistance, RON and Off resistance, ROFF parameter values to keep the ratio RON/ROFF as small as possible, and less than $1 \mathrm{e}+12$.
- Increase the Hysteresis voltage, VH parameter value to reduce switch chatter.
- Decrease the Max step size parameter value (in the Configuration Parameters block dialog box).

Voltage-Controlled Switch

Note This increases the simulation time.

Block Parameters: Voltage-Controlled Switch					区
- Voltage-Controlled Switch The block represents a voltage controlled switch. If the controlling voltage is greater than the sum of the threshold voltage and the hysteresis voltage the switch is closed and its resistance value is RON. If the controlling voltage is less than the difference of the threshold voltage minus the hysteresis voltage then the switch is open and its resistance value is ROFF. If the controlling voltage value is within the crossover region, the switch position is unchanged.					
Parameters					
Threshold voltage, VT:	0				∇
Hysteresis voltage, VH :	0				\checkmark
On resistance, RON:	1			Ohm	\checkmark
Off resistance, ROFF:	1e+12			Ohm	\checkmark
Initial switch state:	On			\checkmark	
		OK	Cancel	Help	Apply

Threshold voltage, VT

The voltage above which the block interprets the controlling voltage as HIGH. The default value is 0 V .

Note The controlling voltage must differ from the threshold voltage by at least the Hysteresis voltage, VH parameter value to change the state of the switch.

Hysteresis voltage, VH

The amount by which the controlling voltage must exceed or fall below the Threshold voltage, VT parameter value to change the state of the switch. The default value is 0 V .

On resistance, RON

The resistance of the switch when it is closed. The default value is 1Ω.

Off resistance, ROFF

The resistance of the switch when it is open. The default value is $1 \mathrm{e}+12 \Omega$.

Initial switch state

Select one of the following options for the state of the switch at the start of the simulation:

- On - The switch is initially closed and its resistance value is equal to the On resistance, RON parameter value. This is the default option.
- Off - The switch is initially open and its resistance value is equal to the Off resistance, ROFF parameter value.

Ports
 The block has the following ports:

$+$
Positive electrical input and output ports.

Negative electrical input and output ports.

Voltage-Controlled Switch

B

Band-Limited Op-Amp block 2-2

C

CMOS AND block 2-6
CMOS Buffer block 2-14
CMOS NAND block 2-22
CMOS NOR block 2-30
CMOS NOT block 2-38
CMOS OR block 2-46
CMOS XOR block 2-54
Comparator block 2-62
Controlled PWM Voltage block 2-67
Crystal block 2-70
Current-Controlled Switch block 2-76

D

DC Current Source block 2-79
DC Motor block 2-81
DC Voltage Source block 2-88
Diode block
Diode 2-89

E

Exponential Current Source block 2-103
Exponential Voltage Source block 2-106

F

FEM-Parameterized Linear Actuator block 2-109
FEM-Parameterized Rotary Actuator block 2-118
Finite-Gain Op-Amp block 2-127
Fuse block 2-130

G

Generic Battery block 2-132
Generic Linear Actuator block 2-136

Generic Rotary Actuator block 2-142

H

H-Bridge block 2-148

I

Incremental Shaft Encoder block 2-154
Induction Motor block 2-157

L

Light-Emitting Diode block 2-169

N

N-Channel IGBT block 2-179
N-Channel JFET block 2-187
N-Channel MOSFET block 2-198
Negative Supply Rail block 2-206
NPN Bipolar Transistor block 2-208

0

Optocoupler block 2-216

P

P-Channel JFET block 2-224
P-Channel MOSFET block 2-235
Photodiode block 2-253
Piezo Linear Motor block 2-265
Piezo Rotary Motor block 2-275
Piezo Stack block 2-285
PNP Bipolar Transistor block 2-294
Polynomial Current-Controlled Current Source block 2-243
Polynomial Current-Controlled Voltage Source block 2-248

Polynomial Voltage-Controlled Current Source block 2-324
Polynomial Voltage-Controlled Voltage Source block 2-329
Positive Supply Rail block 2-302
Potentiometer block 2-304
Proximity Sensor block 2-308
PS Sensor block 2-312
Pulse Current Source block 2-316
Pulse Voltage Source block 2-320
PWL Current Source block 2-334
PWL Voltage Source block 2-338

R

Relay block 2-341

S

S-R Latch block 2-344
Servomotor block 2-352
SFFM Current Source block 2-358
SFFM Voltage Source block 2-361
Shunt Motor block 2-364
Sinusoidal Current Source block 2-372
Sinusoidal Voltage Source block 2-375
Solar Cell block 2-378
Solenoid block 2-388
SPICE Diode block 2-395
SPICE Environment Parameters block 2-409
SPICE NJFET block 2-411
SPICE NMOS block 2-427
SPICE NPN block 2-467

SPICE PJFET block 2-493
SPICE PMOS block 2-509
SPICE PNP block 2-548
SPICE Resistor block 2-575
Stepper Motor block 2-581
Stepper Motor Driver block 2-586
Strain Gauge block 2-589

T

Thermal Resistor block 2-597
Thermistor block 2-601
Thermocouple block 2-605
Three-Winding Mutual Inductor block 2-610
Timer block 2-591
Two-Input Polynomial Current-Controlled Current Source block 2-246
Two-Input Polynomial Current-Controlled Voltage Source block 2-251
Two-Input Polynomial Voltage-Controlled Current Source block 2-327
Two-Input Polynomial Voltage-Controlled Voltage Source block 2-332

U

Universal Motor block 2-614

v

Variable Capacitor block 2-623
Variable Inductor block 2-626
Voltage-Controlled Switch block 2-629

[^0]: New for Version 1.0 (Release 2008a+)
 Revised for Version 1.1 (Release 2008b)
 Revised for Version 1.2 (Release 2009a)
 Revised for Version 1.3 (Release 2009b)
 Revised for Version 1.4 (Release 2010a)

[^1]: $+$
 Positive electrical voltage.

 Negative electrical voltage.

[^2]: References [1] H. Shichman and D. A. Hodges, Modeling and simulation of insulated-gate field-effect transistor switching circuits. IEEE J. Solid State Circuits, SC-3, 1968.
 [2] G. Massobrio and P. Antognetti. Semiconductor Device Modeling with SPICE. 2nd Edition, McGraw-Hill, 1993. Chapter 2.

 See Also P-Channel JFET

[^3]: References [1] H. Shichman and D. A. Hodges, Modeling and simulation of insulated-gate field-effect transistor switching circuits. IEEE J. Solid State Circuits, SC-3, 1968.
 [2] G. Massobrio and P. Antognetti. Semiconductor Device Modeling with SPICE. 2nd Edition, McGraw-Hill, 1993. Chapter 2.

 See Also N-Channel JFET

[^4]: References [1] H. Shichman and D. A. Hodges. "Modeling and simulation of insulated-gate field-effect transistor switching circuits." IEEE J. Solid State Circuits, SC-3, 1968.

[^5]: $+$
 Positive electrical voltage.

 Negative electrical voltage.

[^6]: Where:

[^7]: Basic
 The model is based on the following assumptions:
 Assumptions and Limitations

 - The PNP block does not support noise analysis.
 - The PNP block applies initial conditions across junction capacitors and not across the block ports.

